B How does the doping concentration affect the depletion width?

Click For Summary
The depletion region in a semiconductor decreases with increasing doping concentration due to enhanced recombination of charge carriers. When a junction is formed, excess electrons from the n-type material diffuse to the p-type, where they meet holes. Higher doping concentrations increase the likelihood of these electrons encountering holes, leading to a shorter recombination path. The asymmetry of the depletion region arises from differences in effective mass between electrons and holes, affecting their distribution. Understanding these dynamics involves complex mathematical concepts like distribution functions and mean free paths.
Kaushik
Messages
282
Reaction score
17
TL;DR
In my book, it is given that the depletion width increases with a decrease in doping concentration.
I do not understand why that is the case. Is there any intuitive explanation for it? Thanks
 
Physics news on Phys.org
Stating it the other way might give a better intuition: Depletion region decreases with increasing doping concentration.

The definition of the depletion region is there are no free charge carriers there. Because they are "recombined". Recombination is the process of an electron meeting with a hole and terminating each other. This is how it works:

When you make a junction the excessive electrons in the n-type is going to diffuse towards the p-type. (And vice versa.) If your doping concentration is high the probability of an electron to meet with a hole is going to be enhanced. So all the electrons diffused to the p-side are going to find their mathces in a shorter path.

The exact details are somehow mathematical involving the "distribution functions","effective masses" and "mean free paths". That is the reason that even if you get the same concentrtion of electrons and holes on both sides the depletion region will be asymetric becausse the effective mass of a hole is bigger. Hope that helps.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. I am in no way trolling. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. Yes, I'm questioning the most elementary physics question we're given in this world. The classic elevator in motion question: A person is standing on a scale in an elevator that is in constant motion...