Undergrad How Does the Limit of the Integral Relate to the Sinc Integral?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The limit of the integral as \( n \) approaches infinity is established as follows: \(\lim_{n\to \infty} \int_0^{\pi/(2n)} \frac{\sin 2nx}{\sin x}\, dx = \int_0^\pi \frac{\sin x}{x}\, dx\). This conclusion directly relates the behavior of the sinc function to the integral's limit, demonstrating the convergence of the integral over the specified interval. The discussion emphasizes the importance of understanding the properties of the sinc function in relation to integral calculus.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with the sinc function
  • Knowledge of limits and convergence in calculus
  • Basic proficiency in mathematical proofs
NEXT STEPS
  • Study the properties of the sinc function and its applications in Fourier analysis
  • Explore advanced techniques in evaluating improper integrals
  • Learn about the Dominated Convergence Theorem in real analysis
  • Investigate the relationship between oscillatory integrals and convergence
USEFUL FOR

Mathematicians, students of calculus, and anyone interested in advanced integral calculus and the properties of the sinc function will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Prove

$$\lim_{n\to \infty} \int_0^{\pi/(2n)} \frac{\sin 2nx}{\sin x}\, dx = \int_0^\pi \frac{\sin x}{x}\, dx.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.
I'll prove this in two ways: (1) by Lebesgue integration and (2) by Riemann integration.

(1) By a change of variable $y = 2n x$, I write

$$\int_0^{\pi/2n} \frac{\sin 2n x}{\sin x}\, dx = \int_0^\pi \frac{\sin y}{2n\sin \frac{y}{2n}}\, dy\tag{*}$$

Since $\sin x \ge \dfrac{2x}{\pi}$ for $0 \le x \le \pi/2$, then $2n \sin \dfrac{y}{2n} \ge \dfrac2\pi y$ for $0 \le y \le \pi$. Thus, the integrand of the right-hand side of (*) is bounded by $\dfrac{\pi}{2}\cdot\dfrac{\sin y}{y}$ on $(0,\pi]$. Furthermore, the integrand converges pointwise to $\dfrac{\sin y}{y}$ over $(0,\pi]$. Hence, by the dominated convergence theorem, the integral converges to $\int_0^\pi \frac{\sin y}{y}\, dy$, as desired.

(2) Note that for every $x$,

$$\sin 2n x = \sum_{k = 1}^n (\sin 2kx - \sin\, [2(k-1)x]) =\sum_{k = 1}^n 2\cos\, [(2k-1)x] \sin x.$$

Thus

$$\int_0^{\pi/2n} \frac{\sin 2nx}{\sin x}\, dx = \int_0^{\pi/2n} \sum_{k = 1}^n 2\cos\,[(2k-1)x]\, dx = \int_0^\pi \frac{1}{n}\sum_{k = 1}^n \cos\, \left[\frac{2k-1}{2n}x\right]\, dx.\tag{**}$$

The sequence of continuous functions

$$f_n(x) = \frac{1}{n}\sum_{k = 1}^n \cos \left[\frac{2k-1}{2n}x\right] \quad (n = 1, 2,3,\ldots)$$

increase monotonically, on the compact interval $[0,\pi]$, to the function $F(x)$, where $F(0) = 1$ and for $x > 0$, $$F(x) = \frac{1}{x}\int_0^x \cos t\, dt = \frac{\sin x}{x}.$$

By Dini's theorem, $f_n$ converges uniformly to $F$ on $[0,\pi]$. Hence,

$$\lim_{n\to \infty} \int_0^\pi f_n(x)\, dx = \int_0^\pi \lim_{n\to \infty} f_n(x)\, dx = \int_0^\pi \frac{\sin x}{x}\, dx,$$

and consequently by (**),

$$\lim_{n\to \infty} \int_0^{\pi/2n} \frac{\sin 2nx}{\sin x}\, dx = \int_0^\pi \frac{\sin x}{x}\, dx.$$
 

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K