MHB How far will the car travel in 10 seconds

AI Thread Summary
A car starting from rest accelerates at a constant rate of 2.0 m/s² for 10 seconds, resulting in a distance traveled of 100 meters. The calculation utilizes the kinematic equation d_f = d_i + v_iΔt + 0.5aΔt², confirming the final distance. The discussion also touches on using integrals to derive velocity and position equations, highlighting the relationship between them. Participants clarify the distinction between velocity (v) and position (x) in their calculations. The final consensus is that the car travels 100 meters in the given time.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{Embry-Brittle \, 12}$
$\textsf{A car, starting from rest, accelerates in a straight line at a constant rate of $\displaystyle 2.0 \frac{m}{s^2}$}$$\textit{How far will the car travel in $10$ seconds}$\begin{align*}\displaystyle
\Delta t&=10\\
a&=2\\
d_i&=0\\
v_i&=0\\
d_f&= d_i + v_i\Delta t + \frac{1}{2} a \Delta t^2\\
&=0+0\cdot 10+\frac{1}{2} \cdot 2\cdot 10^2\\
&=\color{red}{100 \, m}
\end{align*}no answer given so hope this is ok :cool:
 
Mathematics news on Phys.org
karush said:
$\tiny{Embry-Brittle \, 12}$
$\textsf{A car, starting from rest, accelerates in a straight line at a constant rate of $\displaystyle 2.0 \frac{m}{s^2}$}$$\textit{How far will the car travel in $10$ seconds}$\begin{align*}\displaystyle
\Delta t&=10\\
a&=2\\
d_i&=0\\
v_i&=0\\
d_f&= d_i + v_i\Delta t + \frac{1}{2} a \Delta t^2\\
&=0+0\cdot 10+\frac{1}{2} \cdot 2\cdot 10^2\\
&=\color{red}{100 \, m}
\end{align*}no answer given so hope this is ok :cool:

$\displaystyle \begin{align*} v &= \int{ a\,\mathrm{d}t} \\ v &= a\,t + C_1 \\ v &= a\,t \textrm{ since the car starts from rest...} \\ x &= \int{ v\,\mathrm{d}t} \\ x &= \int{ a\,t \, \mathrm{d}t } \\ x &= \frac{1}{2}\,a\,t^2 + C_2 \textrm{ where } C_2 \textrm{ is the starting position...} \end{align*}$

So with $\displaystyle \begin{align*} t = 10 \textrm{ and } a = 2 \end{align*}$ we have

$\displaystyle \begin{align*} x &= \frac{1}{2} \cdot 2 \cdot 10^2 + C_2 \\ &= 100 + C_2 \end{align*}$

Thus the car has traveled 100 metres.
 
ok
I didn't know you could us a integral on it:cool:why did you shift from $v=$ to $x=$
 
Last edited:
You could use the kinematic equation:

$$x=\frac{v_f^2-v_i^2}{2a}=\frac{\left(20\frac{\text{m}}{\text{s}}\right)^2-\left(0\frac{\text{m}}{\text{s}}\right)^2}{2\left(2\frac{\text{m}}{\text{s}^2}\right)}=100\text{ m}$$
 
karush said:
why did you shift from $v=$ to $x=$

$v$ is velocity, $x$ is position.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top