How far will the car travel in 10 seconds

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Car Seconds Travel
Click For Summary

Discussion Overview

The discussion revolves around calculating the distance a car travels in 10 seconds while accelerating from rest at a constant rate of 2.0 m/s². Participants explore various methods of deriving the solution, including kinematic equations and integral calculus.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents a calculation using the kinematic equation for distance, concluding that the car travels 100 m in 10 seconds.
  • Another participant elaborates on the same calculation using integral calculus to derive the distance, also arriving at 100 m.
  • A participant expresses surprise at the use of integrals for this problem and questions the transition from velocity (v) to position (x) in the derivation.
  • A different approach using another kinematic equation is suggested, which also results in a distance of 100 m.
  • There is a clarification that v represents velocity and x represents position, addressing the earlier question about the shift in variables.

Areas of Agreement / Disagreement

Participants generally agree on the calculated distance of 100 m, but there is some uncertainty regarding the methods used, particularly the transition between velocity and position in the derivations.

Contextual Notes

Some assumptions regarding initial conditions and the applicability of different equations may not be explicitly stated, which could affect the interpretations of the calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{Embry-Brittle \, 12}$
$\textsf{A car, starting from rest, accelerates in a straight line at a constant rate of $\displaystyle 2.0 \frac{m}{s^2}$}$$\textit{How far will the car travel in $10$ seconds}$\begin{align*}\displaystyle
\Delta t&=10\\
a&=2\\
d_i&=0\\
v_i&=0\\
d_f&= d_i + v_i\Delta t + \frac{1}{2} a \Delta t^2\\
&=0+0\cdot 10+\frac{1}{2} \cdot 2\cdot 10^2\\
&=\color{red}{100 \, m}
\end{align*}no answer given so hope this is ok :cool:
 
Mathematics news on Phys.org
karush said:
$\tiny{Embry-Brittle \, 12}$
$\textsf{A car, starting from rest, accelerates in a straight line at a constant rate of $\displaystyle 2.0 \frac{m}{s^2}$}$$\textit{How far will the car travel in $10$ seconds}$\begin{align*}\displaystyle
\Delta t&=10\\
a&=2\\
d_i&=0\\
v_i&=0\\
d_f&= d_i + v_i\Delta t + \frac{1}{2} a \Delta t^2\\
&=0+0\cdot 10+\frac{1}{2} \cdot 2\cdot 10^2\\
&=\color{red}{100 \, m}
\end{align*}no answer given so hope this is ok :cool:

$\displaystyle \begin{align*} v &= \int{ a\,\mathrm{d}t} \\ v &= a\,t + C_1 \\ v &= a\,t \textrm{ since the car starts from rest...} \\ x &= \int{ v\,\mathrm{d}t} \\ x &= \int{ a\,t \, \mathrm{d}t } \\ x &= \frac{1}{2}\,a\,t^2 + C_2 \textrm{ where } C_2 \textrm{ is the starting position...} \end{align*}$

So with $\displaystyle \begin{align*} t = 10 \textrm{ and } a = 2 \end{align*}$ we have

$\displaystyle \begin{align*} x &= \frac{1}{2} \cdot 2 \cdot 10^2 + C_2 \\ &= 100 + C_2 \end{align*}$

Thus the car has traveled 100 metres.
 
ok
I didn't know you could us a integral on it:cool:why did you shift from $v=$ to $x=$
 
Last edited:
You could use the kinematic equation:

$$x=\frac{v_f^2-v_i^2}{2a}=\frac{\left(20\frac{\text{m}}{\text{s}}\right)^2-\left(0\frac{\text{m}}{\text{s}}\right)^2}{2\left(2\frac{\text{m}}{\text{s}^2}\right)}=100\text{ m}$$
 
karush said:
why did you shift from $v=$ to $x=$

$v$ is velocity, $x$ is position.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
10K