How Is the Damping Coefficient Calculated in a Fluid-Dynamic Dashpot System?

Click For Summary
The discussion focuses on calculating the damping coefficient in a fluid-dynamic dashpot system with a piston and flywheel setup. Key points include the effects of shear stress and friction due to fluid viscosity, as well as the pressure gradient that develops across the piston during motion. The participants emphasize the importance of considering fluid compressibility, particularly since air is the working fluid, and suggest using Reynolds' equation to analyze viscous forces. There is also caution regarding the appropriateness of modeling the flow as a circular pipe due to the geometry of the piston gap. The conversation highlights the need for justified equations to accurately calculate the damping coefficient and potential leakage around the piston.
a.mlw.walker
Messages
144
Reaction score
0
So have a loose fitting piston attached to a conrod, attached to a flywheel. The chamber the piston is in is sealed reasonably well around the controd, and is full of a fluid with a viscosity.
Let's say the flywheel is spinning.

I want to work out from the fluid dynamics occurring, what the damping coefficient is around the piston due to fluid moving over it.

What I think is true.

1. There is shear stress occurring, due to the shearing layers of the fluid. I have included that.

2. The model can be assumed to be a pipe, and therefore there is friction occurring due to surface roughness, and the head loss (pressure) can be calculated using a moody chart. I am including this.

3. A pressure gradient builds up across the piston, due to the piston accelerating towards the middle of the stroke, fluid in front of it increases in pressure, and fluid behind it decreases in pressure.
This pressure gradient forces fluid over and around the piston.
This is acting against the motion, and is another source of damping.

If the first two are agreed with, it is the third one I think has the most effect, because my MATLAB code runs nicely but far too fast, i.e for a specified torque applied to the flywheel, the real model runs slower than the simulation (in matlab) - like a tenth of the speed.

I think I need to consider fluid compressibility (currently the fluid is air, but could be changed - so compressibility would change...?)

But I also don't know how to calculate the coefficient that is mulitplied by the velocity of the piston to give the damping term. Does anyone have any (prefferably justified) equation that can help me calculate this coefficient. Assume other variables are obtainable. I believe it could be NOT a constant, although I may be wrong.

I also am not sure whether (using the same equation) I can calculate any leakage past the conrod of the piston, as it moves linearly in and out of the piston chamber - I think there would be some around it

If anyone has any commments about my approach to this they would be very welcome.

Alex
 
Engineering news on Phys.org
Item 3 is important, because if you assume the fluid is incompressible, the mean velocity of the fluid through the gap is not the same as the velocity of the piston. In fact the fluid velocity is scaled up in the ratio of (area of the piston)/(area of gap).

Depending on the clearance around the piston, the "flow in a pipe" model may not be appropriate for this. Remember the "pipe" is effectlvely a thin rectangle, with width = 2 pi r and depth = the clearance gap, so any formulas that assume an approximately circular pipe should be treated with a lot of caution. The fact that the "rectangle" is bent round into a circle won't affect the situation much.

If you consider the flow to be similar to lubrication of a sliding bearing, the standard equation is Reynolds' equation (the same Reynolds who invented "the number"), which is the basically Navier-Stokes equation reduced to 1-D flow with the appropriate boundary conditions.

You should be able to find examples of Reynolds' equation used to calculate the viscous forces in sliding and journal bearings etc, but I don't know a reference for your exact application.

Edit: I just noticed your fluid is air. It would stiill be reasonable to assume it was incompressible up to a mach number of about 0.25. Otherwise, things will get MUCH more complicated.
 
So the gap is actually a rectangle. and the speed of fluid is scaled up by the area of the piston face/area of rectangle.

When you say the reynolds equation you mean the equation to calculate the Reynolds number? How do you get viscous force from that?

OK I will have a look at Journal Bearings.

If anyone else has any help, would be welcome!
Alex
 
What mathematics software should engineering students use? Is it correct that much of the engineering industry relies on MATLAB, making it the tool many graduates will encounter in professional settings? How does SageMath compare? It is a free package that supports both numerical and symbolic computation and can be installed on various platforms. Could it become more widely used because it is freely available? I am an academic who has taught engineering mathematics, and taught the...

Similar threads

Replies
3
Views
17K
  • · Replies 3 ·
Replies
3
Views
26K
  • · Replies 45 ·
2
Replies
45
Views
6K
Replies
3
Views
4K
Replies
0
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
2
Views
4K
Replies
48
Views
6K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K