- #1

SamRoss

Gold Member

- 234

- 35

## Summary:

- Seeking intuitive understanding of how the weak force "pushes" particles.

Hi everyone,

The four fundamental forces are gravity (I understand that G.R. does not look upon gravity as a force but I'm not worried about that here), the Lorentz force, the weak force, and the strong force. I'm familiar with the inverse square law for gravitation and the Lorentz force F=q(E+vxB). I also have the dimmest understanding of how the strong force is related to a change in motion (protons in the nucleus of an atom would want to move away from each other due to the Lorentz force so there must be another force, called the strong force, which changes this desired motion and pushes them back toward each other; that's as far as my understanding goes). However,

The four fundamental forces are gravity (I understand that G.R. does not look upon gravity as a force but I'm not worried about that here), the Lorentz force, the weak force, and the strong force. I'm familiar with the inverse square law for gravitation and the Lorentz force F=q(E+vxB). I also have the dimmest understanding of how the strong force is related to a change in motion (protons in the nucleus of an atom would want to move away from each other due to the Lorentz force so there must be another force, called the strong force, which changes this desired motion and pushes them back toward each other; that's as far as my understanding goes). However,

**whenever I search for some explanation of the weak force, I only see how it is related to radioactive decay and I don't see clearly how this can be categorized as a "change in motion" which is what a force is supposed to do**. Any help here would be appreciated. Also, similar to how we now think of a=GM/r^2 as an approximation of the motion predicted by G.R., are there analogous approximations of both the strong and weak forces that do not require a high level of understanding of Q.E.D and Q.C.D?