MHB How Many Blue and Red Socks Are in the Drawer?

  • Thread starter Thread starter mathgeek7365
  • Start date Start date
AI Thread Summary
The discussion revolves around a probability problem involving blue and red socks in a drawer, where there are twice as many blue socks as red. The probability of drawing a blue sock first and then a red sock is given as 5/21. The relationship between the number of blue (b) and red (r) socks is established as b = 2r. The participants suggest substituting b with 2r in the probability equation to solve for the number of socks. The conversation emphasizes the importance of expressing all variables in terms of one to facilitate finding a solution.
mathgeek7365
Messages
8
Reaction score
0
My daughter is stumped, and so am I.

A drawer contains socks that are either blue or red. There are twice as many blue socks as red socks. If you select two socks from the drawer without replacement, the chance that you choose first a blue sock and then a red sock is 5/21. How many of each color sock was in the drawer before you removed any?

She knows that the probability to first draw a blue socks, then a red sock is 5/21.
The probability to draw a blue sock with the first draw is the number of blue socks
divided by the total number of socks. So, P(B)=b/n
She also knows that the probability to draw a red sock after one blue sock has been
taken out is the number of red socks divided by the total number of socks left after
you take one sock out. So, P(R)=r/(n-1). The probability of drawing a blue and then a red sock is shown as P(B,R)=(b/n)*(r/(n-1))=(5/21).
She also knows that there are twice as many blue socks as red socks, so b=2r.

She can replace b with 2r in the equation. P(B,R)=(2r/n)*(r/(n-1))=(5/21)

Is she correct so far? She would also like to know how to finish the problem. Thanks.
 
Last edited:
Mathematics news on Phys.org
I would say you're on the right track. You do know that $2r=b$. You also, incidentally, know what $n$ is in terms of $r$ and $b$, right?

Your probability is given by
$$\frac{b}{n} \cdot \frac{r}{n-1}=\frac{5}{21}.$$
Now if you substitute everything in, and get it all in terms of one variable, you might be able to solve for one of the variables.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top