How many elements are in a set of unique rational numbers from 1 to 9?

  • Thread starter Thread starter Born
  • Start date Start date
  • Tags Tags
    Counting Set
Born
Messages
31
Reaction score
1
Let ##T = \{ \frac{n}{m}\in \mathbb{Q} \vert n, m \in \{ 1, 2, ..., 9 \} \}##

No values can repeat (e.g. ##\frac{2}{2},\frac{3}{3},...##)

How many elements does the set have. I could just go ahead and count the elements and eliminate the repeats, but I'm wondering if there is a simpler (and more elegant) way to do it?

Thanks
 
Last edited:
Physics news on Phys.org
Born said:
Let ##T = \{ \frac{n}{m}\in \mathbb{Q} \vert n, m \in \{ 1, 2, ..., 9 \} \}##

No values can repeat (e.g. ##\frac{2}{2},frac{3}{3},...##

What is the question?
 
Sorry, edited the mistake. The question would be; is there a simpler (and more elegant) way to count the number of elements in the set?
 
I don't believe there is a more elegant way. At least I can't think of one.
 
I think this way is more "elegant", but is probably a slower way of counting elements in ##T_9##. I think this does provide a faster way of counting ##T_k = \left\{\dfrac{n}{m}: \enspace n,m\in\{1,...,k\}\right\}## for larger ##k\in \mathbb N##.

Let ##P=\{2,3,5,7\}##, the set of primes that divide ##9##. For each ##D\subseteq P##, let ##M_D## denote the set of numbers whose prime factorization has positive exponents for exactly the primes ##D##. Let ##\mathcal D = \{(D,E): \enspace D,E\subseteq P, \enspace D\cap E=\emptyset\}##.

Then ##T_9 = \bigcup_{(D,E)\in \mathcal D} \left\{ \dfrac{n}{m}: \enspace n\in M_D, m\in M_E \right\}##, and the last expression has no repetition anywhere.
 
  • Like
Likes 1 person
Born said:
Let ##T = \{ \frac{n}{m}\in \mathbb{Q} \vert n, m \in \{ 1, 2, ..., 9 \} \}##

No values can repeat (e.g. ##\frac{2}{2},\frac{3}{3},...##)

How many elements does the set have. I could just go ahead and count the elements and eliminate the repeats, but I'm wondering if there is a simpler (and more elegant) way to do it?

Thanks

I don't think there is as simpler way, but you never know...
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top