How Many Permutations in S_n Fix a Given Pair (i,j)?

  • Thread starter Thread starter quasar987
  • Start date Start date
quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32
I am trying to compute the number

\sum_{g\in S_n}|\mathrm{fix}(g^2)|^2=\sharp\left(\bigsqcup_{g\in S_n}\mathrm{fix}(g^2)\times \mathrm{fix}(g^2)\right)

where S_n is the permutation group on the n elements {1,...n} and where fix(g) = {i in {1,...,n} : g(i)=i}.

So the plan is to fix a pair (i,j) in {1,...n} x {1,...n} and ask how many g's are such that (i,j) belongs to fix(g²) x fix(g²). Then summing over all the possible values of (i,j) gives the desired answer.

I start with (i,j) in {1,...n} x {1,...n} such that i\neq j. How many g's are such that (i,j) belongs to fix(g²) x fix(g²)?

- There are those g's such that g(i)=i, g(j)=j and there are (n-2)! of them.

- There are those g's such that g(i)=k, g(k)=i (k\neq i), g(j)=j and there are (n-2)(n-3)!=(n-2)! of them.

- There are those g's such that g(i)=i, g(j)=l, g(l)=j (l\neq j) and there are (n-2)(n-3)!=(n-2)! of them.

- There are those g's such that g(i)=j, g(j)=i, and there are (n-2)! of them.

- There are those g's such that g(i)=k, g(k)=i (k\neq i,j), g(j)=l, g(l)=g(j) (l\neq i,j), and there are (n-2)(n-3)(n-4)!=(n-2)! of them.

So in total, for (i,j), i\neq j there are 5(n-2)! g's in S_n such that (i,j) is in fix(g²) x fix(g²).

Next, if i in {1,...n} is fixed, how many g's are such that (i,i) is in fix(g²) x fix(g²)?

- There are those g's such that g(i)=i and there are (n-1)! of them.

- There are those g's such that g(i)=k, g(k)=i (k\neq i) and there are (n-1)(n-2)!=(n-2)! of them.

So in total, for each i in {1,...,n}, there are 2(n-1)! g's in S_n such that (i,i) is in fix(g²) x fix(g²).

Since there are n(n-1) ways of choosing (i,j) such that i\neq j and n ways to choosing i, I conclude that

\sum_{g\in S_n}|\mathrm{fix}(g^2)|^2=\sharp\left(\bigsqcup_{g\in S_n}\mathrm{fix}(g^2)\times \mathrm{fix}(g^2)\right) = n(n-1)(5(n-2)!)+n(2(n-1)!)=5n!+2n!=7n!

I have reasons to believe that the correct answer is 8n!. Can anyone see which case I've missed?
 
Last edited:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top