MHB How many possible 7-place license plates are there with 3 letters and 4 digits?

  • Thread starter Thread starter iamjokerface
  • Start date Start date
  • Tags Tags
    Plate
Click For Summary
The problem involves calculating the total number of possible 7-place license plates consisting of 3 letters and 4 digits, with repetition allowed. The initial approach incorrectly used combinations for placing letters and digits, leading to confusion. A more accurate method involves selecting positions for the letters first, then filling the remaining spaces with digits, resulting in the expression 7 * 6 * 5 * 26^3 * 10^4. This accounts for the arrangement of letters and digits correctly. The final calculation should yield the correct total number of license plates.
iamjokerface
Hello,

I am stuck on this one problem. The problem asks:

How many different 7-place license plates are possible when 3 of the entries are letters and 4 are digits? Assume that repetition of letters and numbers is allowed and that there is no restriction on where the letters or numbers can be placed.

The way I approached the problem was:

There are 7C3 ways of choosing the places for letters, and in each letter place, there can be 26 choices. So 7C3*26*26*26 for the letters.
Then there are 7C4 ways of choosing the places for digits, and in each digit place, there are 10 choices, so 7C4*10*10*10*10.
To get the total possibilities, I multiplied the two.

I checked the answer but I am not getting the correct answer.

Where have I gone wrong?
 
Mathematics news on Phys.org
I think the problem is that letters are indistinguishable from one another, as are numbers. I would consider it more like this:

There 7 places to choose the first letter, 6 for the second, and 5 for the third. Once you've chosen the letter locations, the rest are all numbers. So I would probably have an expression like: $7\cdot 6\cdot 5\cdot 26^3 \cdot 10^4$. Does that work?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
7K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
7
Views
9K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
6K