Johnx said:
Siti and Xinyi had the same number of stickers. After Siti gave away 55 stickers and Xinyi threw away 15 stickers. How many stickers did Xinyi have in the end?. Xinyi had three times as many stickers as Siti. How many stickers did Xinyi have in the end?
My answer:
Siti = S
Xinyi = X
Gave/threw away stickers = T
Once again, "Siti" and "Xinyi" are people, not numbers. You mean "S is the number of stickers Siti had initially" and "X is the number of stickers Xinyi had initially". I have no idea what you mean by setting "T" equal to "Gave/threw away stickers" since that phrase is used twice in reference to two
different numbers.
yes, initially Siti and Xinyi had the same number of stickers.
These make no sense at all. I don't know what number "T" refers to.
You are making the same mistake you did in the previous problem. "X" is the number of stickers Xinyi had
initially, not after giving away stickers. It should be clear that the two equations "X= S" and "X= 3S" can't both be true (unless X= S= 0).
Initially Xinyi had X stickers and Siti had S stickers and X= S because they had the same number of stickers. After Xinyi threw away 15 stickers, Xinyi had X- 15 left. Do you understand that? After Siti gave away 55 stickers, Siti had S- 55 left. NOW Xinyi had 3 times as many stickers as Siti: X- 15= 3(S- 55).
You need to solve the two equation X= S and X- 15= 3(S- 55). Since X= S, the simplest thing to do is replace X by S in X- 15= 3(S- 55): S- 15= 3(S- 55). Solve that equation for S.
so, in short, I did elimination.
S = T - 55
-(3S = T - 15)
so, S = 20
Answer = 60.
The answer to
what question? How did you go from "S= 20" to "Answer is 60"? You never say what 'S' represents but, from your first equation, apparently 'S' was the number of stickers Siti had initially. The question asked was 'How many stickers did Xinyi have in the end?' If S= 20 then you are saying that Siti had 20 stickers initially and Xinyi had the same number, 20. If Xinyi then "threw away 15 stickers" how could Xinyi have 60 at the end? Frankly it looks like you are going through all that calculation randomly, then copying the 'answer' from the back of the book.
My question is, is there a better way to do this besides elimination?
It is not a question of "a better way". Unfortunately pretty much nothing you have done here is correct. You appear not to have a clear idea of what the letters you write as variables represent and are writing down equations with no logical reason. You really need to talk to your teacher who hopefully can help you get a better idea of how to convert sentences to equations.