How many volts/amps for an electric arc between points?

AI Thread Summary
To create a continuous electric arc between two sharp metal points in a hollow insulating cylinder, approximately 300,000 volts is required to ionize the air, based on the breakdown voltage of around 3 million volts per meter. This voltage may vary due to atmospheric conditions like pressure and moisture. After establishing the arc, the required amperage remains unclear and requires further investigation. Additionally, it is suggested that the voltage needed might decrease with increasing temperature, similar to the behavior observed in a Jacob's ladder. The discussion highlights the complexity of achieving and maintaining an electric arc in controlled conditions.
Transfixed
Messages
9
Reaction score
0
Can someone help me find these calculations or give me a point in the right directions?

If I have a hollow insulating cylinder (has a diameter of 5 cm and a length of 14 cm) with two (conductive) sharp metal point contacts at each end (measuring 2cm each leaving 10 cm exactly between the points). Inside the cylinder is normal atmosspheric pressure of standard air.

How do I calculate how many volts and amps I require to have a continuous electric arc between the contacts?

Thanks for your help and all answers are welcome.

:smile:
 
Engineering news on Phys.org
Thats a rather complicated question. To get any current flow at all you must first ionize, or breakdown the air. The breakdown voltage for air is roughly 3 million volts per meter - that varies with pressure and moisture content - so you need about 300,000 volts to start the arc. After that things get more complicated.
 
First of all thank you mheslep for the speedy reply, I appreciate it.

I could use an array of extremely high voltage generators to produce 300,000 to 330,000 volts and a continuous 10cm electric arc (assuming a standard pressure and temperature air mix), but this would still be a process of trial and error.

One more question is:

Assuming the cylinder is closed to outside influence and the walls are a suitable insulator to temperature, would the voltage required to generate the discharge should drop when the temperature increases on a steady curve, just like the rising temp of a high voltage traveling arc (Jacob’s ladder)?

I still have not found how many amps are required but I will keep searching. :)
 
mheslep said:
Thats a rather complicated question. To get any current flow at all you must first ionize, or breakdown the air. The breakdown voltage for air is roughly 3 million volts per meter - that varies with pressure and moisture content - so you need about 300,000 volts to start the arc. After that things get more complicated.

I get half that; 150KV. How did you arrive at 300?
 
3 × 10^6 V/m

I have found several sources like hypertextboox qouteing the average votage for dielectric breakdown of air around 3 × 10^6 V/m I took this as a base line and divided 3,000,000 by 100 then mutliplied it by 10 to arive at 300,000 volts for every 10cm.

Exclueding the build up of ozone and nitrous oxide on the sharp metal contacts causing corrision of course.

Where did you get 150,000 volts for 10cm?

as always thanks for the reply.
 
Doh! My mistake. 150KV per conductor. 300KV total, of course. But can one really ignore electron and ion drift?
 
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top