- #1

Simfish

Gold Member

- 818

- 2

## Main Question or Discussion Point

So in general, it seems that most physics courses don't really require anything beyond linear algebra, multivariable calc, and differential equations. All the other math is taught as the student learns Quantum Mechanics or Electromagnetism (this is how students learn how to do PDEs and such). As such, those three math courses are the only three needed for physics majors here (although they do take a math methods sequence, though this only extends the math toolkit to partial differential equations, complex variables, and fourier transforms).

But general relativity seems a lot different. It has items from a math major's toolkit - abstract algebra, topology, differential geometry, and even possibly math at the graduate level. Do most physics students end up having to take those math courses when they learn general relativity, or are they still able to "learn math along the way of learning general relativity?" Does general relativity also require real analysis?

But general relativity seems a lot different. It has items from a math major's toolkit - abstract algebra, topology, differential geometry, and even possibly math at the graduate level. Do most physics students end up having to take those math courses when they learn general relativity, or are they still able to "learn math along the way of learning general relativity?" Does general relativity also require real analysis?