[tex]\[(adsbygoogle = window.adsbygoogle || []).push({});

\nabla \cdot \frac{{\vec e_r }}{{r^2 }} = 4\pi \delta (\vec r)

\]

[/tex]

This can be seen from[tex]\[

\nabla \cdot \frac{{\vec e_r }}{{r^2 }} = \frac{1}{{r^2 }}\frac{\partial }{{\partial r}}(r^2 \cdot \frac{1}{{r^2 }}) = \frac{1}{{r^2 }}\frac{\partial }{{\partial r}}(1) = 0(r \ne 0)

\]

[/tex]

And from Gauss' Theorem[tex]\[

\int_V {(\nabla \cdot \frac{{\vec e_r }}{{r^2 }})dV = \oint_S {\frac{{\vec e_r }}{{r^2 }} \cdot d\vec S} } = 4\pi

\]

[/tex]

But if I want to directly using the formula of divergence in spherical coordinates,I can only get[tex]\[

\nabla \cdot \frac{{\vec e_r }}{{r^2 }} = \frac{1}{{r^2 }}\frac{\partial }{{\partial r}}(\frac{{r^2 }}{{r^2 }})

\]

[/tex]

And integrating this over a volume cannot give me the result of 4π[tex]\[

\int_V {(\nabla \cdot \frac{{\vec e_r }}{{r^2 }})dV = } \int_0^\pi {\sin \theta d\theta \int_0^{2\pi } {d\phi \int_0^R {\frac{\partial }{{\partial r}}(\frac{{r^2 }}{{r^2 }})} } } dr = 4\pi \int_0^R {\frac{\partial }{{\partial r}}(\frac{{r^2 }}{{r^2 }})} dr

\]

[/tex]

(Here V is a sphere with radius of R)

So how can I connect it with Dirac Delta?

By the way,I post this here because this problem arises in the electrostatic field of a point charge and I found nothing about such thing in any book concerning δ(x).

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How to calculate divergence of some special fields

**Physics Forums | Science Articles, Homework Help, Discussion**