MHB How to Calculate the Sum of Squares in Complex Equation Systems?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion presents a mathematical problem requiring the calculation of the sum of squares \(x^2+y^2+z^2+w^2\) based on a series of equations involving ratios of squares. Four equations are provided, each equating a sum of squared variables divided by the difference of squares of integers to 1. The equations involve different integer values and require solving a system of equations to find the values of \(x\), \(y\), \(z\), and \(w\). A suggested solution is mentioned but not detailed in the discussion. The problem remains unsolved from the previous week, indicating a lack of engagement from participants.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Determine $x^2+y^2+z^2+w^2$ if

$\dfrac{x^2}{2^2-1^2}+\dfrac{y^2}{2^2-3^2}+\dfrac{z^2}{2^2-5^2}+\dfrac{w^2}{2^2-7^2}=1,\\\dfrac{x^2}{4^2-1^2}+\dfrac{y^2}{4^2-3^2}+\dfrac{z^2}{4^2-5^2}+\dfrac{w^2}{4^2-7^2}=1,\\\dfrac{x^2}{6^2-1^2}+\dfrac{y^2}{6^2-3^2}+\dfrac{z^2}{6^2-5^2}+\dfrac{w^2}{6^2-7^2}=1,\\\dfrac{x^2}{8^2-1^2}+\dfrac{y^2}{8^2-3^2}+\dfrac{z^2}{8^2-5^2}+\dfrac{w^2}{8^2-7^2}=1$

-----

 
Physics news on Phys.org
No one answered last week's problem.(Sadface)

You can find the suggested solution below:

The claim that the given system of equations is satisfied by $x^2,\,y^2,\,z^2$ and $w^2$ is equivalent to claiming that

$$\dfrac{x^2}{t-1^2}+\dfrac{y^2}{t-3^2}+\dfrac{z^2}{t-5^2}+\dfrac{w^2}{t-7^2}=1 \tag{1}$$

is satisfied by $t=4,\, 16,\,36$ and $64$.

Clearing the fractions, we find that for all values of $t$ for which it is defined (i.e. $t\ne 1,\,9,\,25$ and $49$), $(1)$ is equivalent to the polynomial equation $P(t)=0$, where

$P(t)=(t-1)(t-9)(t-25)(t-49)-x^2(t-9)(t-25)(t-49)-y^2(t-1)(t-25)(t-49)\\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-z^2(t-1)(t-9)(t-49)-w^2(t-1)(t-9)(t-25)$

Since degree $P(t)=4,\,P(t)=0$ has exactly four zeros $t=4,\,16,\,36$ and $64$, i.e.,

$P(t)=(t-4)(t-16)(t-36)(t-64)$

Comparing the coefficients of $t^3$ in the two expressions of $P(t)$ yields

$1+9+25+49+x^2+y^2+z^2+w^2=4+16+36+64$,

from which it follows that

$x^2+y^2+z^2+w^2=36$
 
Back
Top