JBA
Science Advisor
Gold Member
- 1,532
- 462
On a minor point since the result for 45° is the same for both,the direction of force parallel to the helix axis is mg*sin (45°), not cos(45°) which in this case is the identical value anyway. The cos() is the radial force on the tube.
On the other hand, while I agree the force along the axis is as calculated, I am not sure that is the force that provides the actual torque on the screw because the angle of the slope due to the helix's pitch is much less.
As an example, looking at the reference animation, freezing it (mentally) and then observing the immediate slope under the ball indicates not all of the force along the helix axis is actually applied to act as a torque on the screw.
Another way of looking at it is if you unwind the helix tube and lift one end to the same elevation as the top of the helix, the angle of its slope = 23.3°, which exactly the same value @vxiaoyu18 calculated for the combined helix pitch angle and 45° helix axis angle, relative to the horizontal in his post #31.
In other words if you want a high torque from a ball drop then you want a combined helix axis and pitch angle as close to vertical as possible, you just won't get many rotations from each ball drop.
On the other hand, while I agree the force along the axis is as calculated, I am not sure that is the force that provides the actual torque on the screw because the angle of the slope due to the helix's pitch is much less.
As an example, looking at the reference animation, freezing it (mentally) and then observing the immediate slope under the ball indicates not all of the force along the helix axis is actually applied to act as a torque on the screw.
Another way of looking at it is if you unwind the helix tube and lift one end to the same elevation as the top of the helix, the angle of its slope = 23.3°, which exactly the same value @vxiaoyu18 calculated for the combined helix pitch angle and 45° helix axis angle, relative to the horizontal in his post #31.
In other words if you want a high torque from a ball drop then you want a combined helix axis and pitch angle as close to vertical as possible, you just won't get many rotations from each ball drop.