vxiaoyu18
- 93
- 13
Baluncore said:I believe I can now identify the position of the dip that a ball will rest in.
I need numbers for these four parameters;
1. Pitch of the helix; = axial advance per turn.
2. The angle of the helix rotational axis, measured from the vertical.
3. Radius of the helix, that the central axis of the tube follows.
4. The internal radius of the tube.
Let me just reimagine the problem for the sake of math.
Gravity coefficient g= 9.8n /kg;
π= 3.14;
Density of 304 steel ρ =7930 kg/m³;
Rolling friction coefficient between steel ball and stainless steel material u₁=0.0015;
Friction coefficient of deep groove ball bearing u₂=0.0015.
Steel ball:
Radius r₁= 0.045m;
The quality of the m₁ = 3.03 kg;
Gravity G₁ = 29.65 N;
Radius of rotation of steel ball in tube is r₂=0.064 m.
Center axis:
radius r₃= 0.005m;
The length of the L₁= 2.8 m;
The quality of the m₂ = 1.74 kg;
Gravity G₂= 17.08 N
Spiral pipe (304 stainless steel) :
Inner diameter d= 0.1 m;
Outside diameter D₁ = 0.108 m;
Wall thickness s = 0.004 m;
Pitch L₁ = 0.25 m;
Number of turns n = 10;
H₁ = 2.5 m;
Diameter of helix D₂=0.118 m;
Outside diameter of spiral tube rotation D₃=0.226 m;
Length of spiral tube L₂= 2.5 m;
Helix length L₃=4.47 m;
Mass m₃=46.30 kg;
Gravity of spiral tube G₃= 453.74 n;
Helix Angle α =34°;
Angle of inclination between spiral tube and horizontal plane β =45°;
Angle of inclination between helix and horizontal plane θ=23.30°;
The inclination height of spiral pipe is H₂= 1.77 m.