JBA
Science Advisor
Gold Member
- 1,532
- 462
@Baluncore , After all of our work I hardly believe I am posting this.
Last night, I began to consider that I had made an error in my above calculation by using D2*π as the distance the ball traveled for each wrap of the helix in my in my F = E/n/(D2*π) calculation; when, I should have used:
F =E/n/(sqrt((D2*p)^2+H2^2) for that formula.
After making that revision this morning, I appear to have verified its accuracy because with that revision my calculation result for F at 90° is exactly the same as the simple F = Ma*sin(33°) = 16.60N result, (unfortunately I failed to check that for my original calculation after seeing my correlation with your result at 45°).
Obviously, the main issue that creates is that at α = 45°, that revision reduces my original T = .835N-m value to
T = .693N-m and reduces the values in my curve but not its profile and still calculates T = 0 at α= 0°; but, no longer correlates with your results.
Please review this revision and let me know your thoughts.
Last night, I began to consider that I had made an error in my above calculation by using D2*π as the distance the ball traveled for each wrap of the helix in my in my F = E/n/(D2*π) calculation; when, I should have used:
F =E/n/(sqrt((D2*p)^2+H2^2) for that formula.
After making that revision this morning, I appear to have verified its accuracy because with that revision my calculation result for F at 90° is exactly the same as the simple F = Ma*sin(33°) = 16.60N result, (unfortunately I failed to check that for my original calculation after seeing my correlation with your result at 45°).
Obviously, the main issue that creates is that at α = 45°, that revision reduces my original T = .835N-m value to
T = .693N-m and reduces the values in my curve but not its profile and still calculates T = 0 at α= 0°; but, no longer correlates with your results.
Please review this revision and let me know your thoughts.