How to convert units when calculating a dimensionless quantity?

Click For Summary
The discussion focuses on converting units for calculating dimensionless quantities in high-energy physics, specifically relating Mpc and GeV. It emphasizes that in natural units, where ħ and c equal 1, both length and time are treated as inverse energy dimensions. Participants express confusion about the dimensional relationships, particularly regarding the equations referenced in the paper and the dimensions of P(k) compared to k^5. Clarification is sought on the specific equations and their implications for dimensional analysis. Understanding these conversions is crucial for accurate calculations in theoretical physics.
Safinaz
Messages
255
Reaction score
8
Homework Statement
For instance consider calculating this dimensionless quantity:

##
P= \frac{1}{H^4~~ (GeV)^4} \times \left(\frac{1}{k_0 ~~~(Mpc)^{-1}}\right)^{0.2} ~~(1)
##
Relevant Equations
Where H and k are constants. How to convert or choose units to make ##P## dimensionless.
where Mpc##^{-1} = 6.6 \times 10^{-39}## GeV.
The original quantity is given in this paper: [reference][1], equations: (31-33-34), where ##a(\eta)= \frac{1}{H\eta}##, so I considered in (1) only the constants which share by dimensions to ##P##.

Any help is appreciated!


[1]: https://arxiv.org/pdf/hep-th/0703290
 
Physics news on Phys.org
Safinaz said:
where Mpc##^{-1} = 6.6 \times 10^{-39}## GeV.
I am intereted in how do you get this relation ? Mpc has dimension of length L. GeV has dimensitn of energy ML^2T^-2.
 
Last edited:
anuttarasammyak said:
I am intereted in how do you get this relation ? Mpc has dimension of length L. GeV has dimensitn of energy ML^2T^-2.
This is in a system of natural units where ##\hbar=c=1##.
 
  • Like
Likes Orodruin and anuttarasammyak
To add to that, in natural units length and time both have dimensions of inverse energy. It is incredibly common to use such units particularly in high-energy physics, relativity, and related fields.
 
1718061620604.png


(30) and (31) seem to suggest that P(k) has same dimension with k^5. Is it OK? I have not found your (1) in the paper. Where is it ?
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K