How to convince myself that I can take n=1 here?

Click For Summary
The discussion revolves around the appropriateness of setting n=1 in the inner product formula for polynomials, specifically when f(t) = t, which has a degree of 1. The user expresses uncertainty about taking n=1, as the problem specifies a fixed degree for polynomials in the linear space Pn. It is noted that while n can be 3 or higher, f(t) = t still fits within that space, suggesting that n does not necessarily have to equal 1. The conversation emphasizes the importance of adhering to the constraints of the polynomial degree rather than simplifying the problem prematurely. Ultimately, the consensus is that n should not be assumed to be 1 without further justification.
Hall
Messages
351
Reaction score
87
Homework Statement
In the linear space ##P_n## of all real polynomials of degree ##\leq## ##n##, define
##
\langle f,g \rangle = \sum_{k=0}^{n} f \left(\frac{k}{n}\right) ~g\left( \frac{k}{n} \right)
##
If ##f(t)=t##, find all real polynomials ##g## orthogonal to ##f##.
Relevant Equations
##\langle f(t)=t, g \rangle = \sum_{k=0}^{n} \frac{k}{n} ~g\left( \frac{k}{n} \right)##
The Homework Statement reads the question.

We have
$$
\langle f,g \rangle = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) ~g\left( \frac{k}{n} \right)
$$
If ##f(t) = t##, we have degree of ##f## is ##1##, so, should I take ##n = 1## in the above inner product formula and proceed as follows
$$
\langle f(t)=t, g \rangle = \sum_{k=0}^{1} \frac{k}{1} ~g\left( \frac{k}{1} \right)$$
$$\sum_{k=0}{1} \frac{k}{1} ~g\left( \frac{k}{1} \right) = 0 $$
$$f(0) ~g(0) + f(1) ~g(1) = 0$$
$$g(1) = 0 ~~~\implies ~~ g(t) = a(1-t) ~~~~~~~~~~~~\text{for any real a}
?
$$
I'm finding it hard to convince myself that I can take ##n=1## just because the degree of ##f## is 1, the ##n## given to us is the fixed degree upto which polynomials are allowed in our linear space ##P_n##.

If I don't take ##n=1## the thing would get a little messier:
$$\sum_{k=0}^{n} \frac{k}{n} g\left( \frac{k}{n} \right) = 0 $$
$$\frac{1}{n} \sum_{k=1}^{n} k ~g\left(\frac{k}{n} \right) = 0 $$
$$\sum_{k=1}^{n} k ~g\left(\frac{k}{n} \right) = 0 $$
$$\text{One possible solution for g is} $$
$$g (t) = a~(t - 1/n) (t- 2/n) \cdots (t - n/n)
$$

Do I have to take ##n=1## or not?
 
Physics news on Phys.org
Hall said:
I'm finding it hard to convince myself that I can take n=1 just because the degree of f is 1, the n given to us is the fixed degree upto which polynomials are allowed in our linear space Pn.
I agree. It could be that n = 3, for instance, but the function f(t) = t would still belong to that space. I don't think you can assume that n = 1.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K