How to convince myself that I can take n=1 here?

Click For Summary
SUMMARY

The discussion centers on the mathematical concept of inner products in polynomial spaces, specifically addressing whether to set n=1 when evaluating the inner product of the function f(t) = t. The participant argues that while the degree of f is 1, it is not definitive that n must equal 1, as higher values of n (e.g., n=3) still allow for f(t) to belong to the polynomial space P_n. The conclusion emphasizes that assuming n=1 is not a necessary condition for the validity of the inner product calculation.

PREREQUISITES
  • Understanding of inner product spaces in linear algebra
  • Familiarity with polynomial functions and their degrees
  • Knowledge of the notation and properties of summation
  • Basic concepts of linear spaces, specifically P_n
NEXT STEPS
  • Explore the properties of inner products in polynomial spaces
  • Study the implications of polynomial degree on inner product calculations
  • Learn about the significance of choosing n in polynomial evaluations
  • Investigate examples of inner products with varying degrees of polynomials
USEFUL FOR

Mathematicians, students studying linear algebra, and anyone interested in the properties of polynomial functions and inner product spaces.

Hall
Messages
351
Reaction score
87
Homework Statement
In the linear space ##P_n## of all real polynomials of degree ##\leq## ##n##, define
##
\langle f,g \rangle = \sum_{k=0}^{n} f \left(\frac{k}{n}\right) ~g\left( \frac{k}{n} \right)
##
If ##f(t)=t##, find all real polynomials ##g## orthogonal to ##f##.
Relevant Equations
##\langle f(t)=t, g \rangle = \sum_{k=0}^{n} \frac{k}{n} ~g\left( \frac{k}{n} \right)##
The Homework Statement reads the question.

We have
$$
\langle f,g \rangle = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) ~g\left( \frac{k}{n} \right)
$$
If ##f(t) = t##, we have degree of ##f## is ##1##, so, should I take ##n = 1## in the above inner product formula and proceed as follows
$$
\langle f(t)=t, g \rangle = \sum_{k=0}^{1} \frac{k}{1} ~g\left( \frac{k}{1} \right)$$
$$\sum_{k=0}{1} \frac{k}{1} ~g\left( \frac{k}{1} \right) = 0 $$
$$f(0) ~g(0) + f(1) ~g(1) = 0$$
$$g(1) = 0 ~~~\implies ~~ g(t) = a(1-t) ~~~~~~~~~~~~\text{for any real a}
?
$$
I'm finding it hard to convince myself that I can take ##n=1## just because the degree of ##f## is 1, the ##n## given to us is the fixed degree upto which polynomials are allowed in our linear space ##P_n##.

If I don't take ##n=1## the thing would get a little messier:
$$\sum_{k=0}^{n} \frac{k}{n} g\left( \frac{k}{n} \right) = 0 $$
$$\frac{1}{n} \sum_{k=1}^{n} k ~g\left(\frac{k}{n} \right) = 0 $$
$$\sum_{k=1}^{n} k ~g\left(\frac{k}{n} \right) = 0 $$
$$\text{One possible solution for g is} $$
$$g (t) = a~(t - 1/n) (t- 2/n) \cdots (t - n/n)
$$

Do I have to take ##n=1## or not?
 
Physics news on Phys.org
Hall said:
I'm finding it hard to convince myself that I can take n=1 just because the degree of f is 1, the n given to us is the fixed degree upto which polynomials are allowed in our linear space Pn.
I agree. It could be that n = 3, for instance, but the function f(t) = t would still belong to that space. I don't think you can assume that n = 1.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K