To summarize, I believe no one has suggested a way to do 1, 2, or 3. The only solution suggested for 4 is a charged conducting sphere where the charge will be uniformly distributed on the outer surface. The charge shell is effectively infinite thin, so this isn’t anything like what you asked for in 1-3, but you have to admit it is radially symmetric, and so technically a valid example that fits your #4 request (even if that isn’t what you meant to ask for)
In short, we haven’t helped much. I can’t think of a way to get a static charge distributed over a finite volume.
However, you do get quasi-static distributions of charge over volumes in dynamic situations, i.e. when current is flowing. A sharp pointed cathode inside a spherical anode will have a radially symmetric charge density. (1/r^2). A plate cathode and a plate anode will have a fairly uniform charge distribution between them (but not spherical, obviously). You could certainly make a cylinder of charge that way. A fluorescent light is a good example. Similar things can be done inside resistive or semiconducting materials. If you put point contacts on opposite sides of a spherical resister the charge density wouldn’t be a sphere and it wouldn’t be uniform, but it would certainly have shape. You might be able to tailor some interesting charge density shape by that kind of approach.
The closest I can think of to a uniformly charged ball is a plasma ball. These are the charged particle equivalent of smoke rings. The flow is toroidal, and the charge density isn’t uniform, but these can come close to being spherical. These occur naturally but they are created in the lab mostly for injecting plasma into fusion reactors. See Marshall injector or theta-pinch.