A How to define ##\nabla \cdot D ## at the interface between dielectrics

AI Thread Summary
Maxwell's equations can describe electromagnetic effects at the interface between two dielectrics with distinct permittivities, where the normal component of the electric displacement field D is continuous, while the electric field E shows discontinuity. The challenge arises when attempting to define the divergence of D at interfaces involving three or more dielectrics, particularly at edges and vertices, where singularities complicate the situation. Standard methods, such as using Gaussian surfaces, help establish continuity conditions but fall short in these complex scenarios. The discussion emphasizes the need for a generalized approach to handle these singularities, focusing on surface divergence and curl. Ultimately, defining divergence at such interfaces remains a significant challenge in electromagnetic theory.
coquelicot
Messages
295
Reaction score
67
TL;DR Summary
Defining ##\nabla \cdot D## or ##\nabla \cdot E## at the interface between dielectrics
It is believed that Maxwell equations (together with other relations depending on the materials) are sufficient to account for any electromagnetic macroscopic effect.
The problem is that, for a Maxwell equation to hold, it must at least be defined.
Consider for example the case of two dielectrics of distinct permittivities, say ##\epsilon_1## and ##\epsilon_2##. We assume for the sake of simplicity that ##D_{conductor 1} = \epsilon_1 E_{conductor 1}## and ##D_{conductor 2} = \epsilon_2 E_{conductor 2},## which already covers a lot of dielectrics.
We also assume that the dielectrics carry no free charge, so Maxwell equation reads ##\nabla \cdot D = 0##.
Let finally restrict ourselves to the electrostatic case.

If the two dielectrics interface at a surface S, then the normal component of E is discontinuous at S, its tangential component is continuous, while the normal component of D is continuous and the tangential components of D are, in general, discontinuous.
For the field E, we could define ##\nabla \cdot E## using the Dirac distribution.
I guess something like that is possible for defining ##\nabla \cdot D##, despite I don't see exactly how (the difference between E and D is that E has only one discontinuous component).

Now, even if a Dirac distribution artifice is possible whenever the interface between two dielectrics is a surface, I see no way to define ##\nabla \cdot E## or ##\nabla \cdot D## whenever three or more dielectrics interface at an edge, or whenever several dielectric interface at a vertex point.

Any idea/knowledge to save Maxwell equations?
 
Physics news on Phys.org
At boundaries of two media you have to apply the integral definition of the differential operators, possibly generalized to their forms describing discontinuities. If you have no free charge, i.e., ##\vec{\nabla} \cdot \vec{D}## using a Gaussian pill box with two of its surfaces parallel to the boundary tells you that the normal component of ##\vec{D}## is continuous, while the normal component of ##\vec{E}## is not. That's because there's a non-zero net-surface charge along the boundary, because of the different polarizability (permittivities) in the different media. from ##\vec{\nabla} \times \vec{E}## using a surface with two sides parallel to the boundary and using Stokes's integral theorem tells you that the components tangential to the boundary are continuous.
 
vanhees71 said:
At boundaries of two media you have to apply the integral definition of the differential operators, possibly generalized to their forms describing discontinuities. If you have no free charge, i.e., ##\vec{\nabla} \cdot \vec{D}## using a Gaussian pill box with two of its surfaces parallel to the boundary tells you that the normal component of ##\vec{D}## is continuous, while the normal component of ##\vec{E}## is not. That's because there's a non-zero net-surface charge along the boundary, because of the different polarizability (permittivities) in the different media. from ##\vec{\nabla} \times \vec{E}## using a surface with two sides parallel to the boundary and using Stokes's integral theorem tells you that the components tangential to the boundary are continuous.
Thanks for your answer.
Yes, that's classic and I wrote that in the question too. Not of any help to define ##\nabla \cdot D## at the interfaces between several dielectrics unfortunately.
 
If you have a singularity at the surface, of course, you can't define a quantity on the surface. You have to describe what happens at the surface by describing the corresponding singularities, i.e., in this case by the surface divergence and surface curl.
 
vanhees71 said:
If you have a singularity at the surface, of course, you can't define a quantity on the surface. You have to describe what happens at the surface by describing the corresponding singularities, i.e., in this case by the surface divergence and surface curl.

Actually the problem is not surfaces but edges and vertices. The essential point in my question is contained in the last 3 lines.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top