- #1

- 560

- 2

## Main Question or Discussion Point

I just read the following definition of a clock in GR:

"A clock is a smooth embedding γ : t → γ(t) from a real interval into M such that the tangent vector \dot{γ} (t) is everywhere timelike with respect to g and future-pointing. This terminology is justified because we can interpret the value of the parameter t as the reading of a clock. Note that our definition of a clock does not demand that “its ticking be uniform” in any sense. Only smoothness and monotonicity are required."

And I wondered how would a clock that is "ticking uniformly" be defined?

"A clock is a smooth embedding γ : t → γ(t) from a real interval into M such that the tangent vector \dot{γ} (t) is everywhere timelike with respect to g and future-pointing. This terminology is justified because we can interpret the value of the parameter t as the reading of a clock. Note that our definition of a clock does not demand that “its ticking be uniform” in any sense. Only smoothness and monotonicity are required."

And I wondered how would a clock that is "ticking uniformly" be defined?