How to determine matching coefficient in Effective Field Theory?

Click For Summary
SUMMARY

The forum discussion focuses on determining the matching coefficients in Effective Field Theory (EFT) using a specific Lagrangian. The Lagrangian includes a light scalar field ##\phi## with mass ##m_L## and a heavy field ##H## with mass ##M##. The matching at tree-level yields the relationships ##m^2=m_L^2##, ##C_4 = \lambda_0##, and ##C_6=0##. The challenge arises in performing one-loop matching, where only one equation is available to solve for two unknowns, ##C_4## and ##C_6##, despite the need for both coefficients to be expressed in terms of the parameters ##\lambda_0, \lambda_2, m, M##.

PREREQUISITES
  • Understanding of Lagrangian mechanics in quantum field theory
  • Familiarity with Effective Field Theory (EFT) concepts
  • Knowledge of one-loop calculations in quantum field theory
  • Experience with renormalization techniques and scales
NEXT STEPS
  • Study Adam Falkowski's lecture notes, particularly section 2.3, for insights on matching coefficients
  • Research the role of logarithmic terms in matching conditions in EFT
  • Explore methods for solving systems of equations in quantum field theory matching scenarios
  • Investigate the implications of higher-order corrections in EFT and their impact on matching
USEFUL FOR

The discussion is beneficial for theoretical physicists, particularly those specializing in quantum field theory and effective field theories, as well as graduate students seeking to deepen their understanding of matching conditions in EFT.

Markus Kahn
Messages
110
Reaction score
14
TL;DR
Given the amplitudes of a scattering process at a fixed order of the EFT and full theory, I don't really understand how one is supposed to match them..
Assume that I have the Lagrangian
$$\mathcal{L}_{UV}
=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m_{L}^{2} \phi^{2}+\left(\partial_{\mu} H\right)^{2}-M^{2} H^{2}\right]
-\frac{\lambda_{0}}{4 !} \phi^{4}-\frac{\lambda_{2}}{4} \phi^{2} H^{2},$$
where ##\phi## is a light scalar field with mass ##m_L## and ##H## a heavy one with mass ##M##. Let the Lagrangian of the effective field theory (EFT) be
$$\mathcal{L}_{EFT} = \frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4 !}-\frac{C_{6}}{M^{2}} \frac{\phi^{6}}{6 !}.$$

Assume that I have calculated the ##4##-point function up to ##1##-loop order and regularized it correctly (renormalization scale ##\mu##). The results are:
$$
\begin{align*}
\mathcal{M}_{4}^{\mathrm{EFT}} &=-C_{4}+\frac{C_{4}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)] \\
&+\frac{3 C_{4}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{C_{6} m^{2}}{32 \pi^{2} M^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right)\\\\
\mathcal{M}_{4}^{\mathrm{UV}} & \approx-\lambda_{0}+\frac{3 \lambda_{0}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{3 \lambda_{2}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{M^{2}}\right)\right)+\frac{m^{2} \lambda_{2}^{2}}{48 \pi^{2} M^{2}} \\
&+\frac{\lambda_{0}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)].
\end{align*}
$$

The matching at tree-level resulted in:
$$m^2=m_L^2,\qquad C_4 = \lambda_0,\qquad C_6=0.$$
I would now like to perform the matching at one-loop, i.e. we demand ##\mathcal{M}_4^{EFT}= \mathcal{M}_4^{UV}+O(M^{-4})##.

Problem
We have two unknowns, ##C_4## and ##C_6##, that need to be expressed in terms of ##\lambda_0, \lambda_2, m, M,## etc. But ##\mathcal{M}_4^{EFT}= \mathcal{M}_4^{UV}+O(M^{-4})## gives us only one equation.. I don't see how we can determine both coefficients with only the above information.

Notes
I'm reading Adam Falkowski's lecture notes, see here. In section 2.3, p. 24, he performs the matching with only the above information and determines ##C_4##... I don't see how that is supposed to work.
 
Physics news on Phys.org
Markus Kahn said:
Summary:: Given the amplitudes of a scattering process at a fixed order of the EFT and full theory, I don't really understand how one is supposed to match them..

Assume that I have the Lagrangian
$$\mathcal{L}_{UV}
=\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m_{L}^{2} \phi^{2}+\left(\partial_{\mu} H\right)^{2}-M^{2} H^{2}\right]
-\frac{\lambda_{0}}{4 !} \phi^{4}-\frac{\lambda_{2}}{4} \phi^{2} H^{2},$$
where ##\phi## is a light scalar field with mass ##m_L## and ##H## a heavy one with mass ##M##. Let the Lagrangian of the effective field theory (EFT) be
$$\mathcal{L}_{EFT} = \frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right]-C_{4} \frac{\phi^{4}}{4 !}-\frac{C_{6}}{M^{2}} \frac{\phi^{6}}{6 !}.$$

Assume that I have calculated the ##4##-point function up to ##1##-loop order and regularized it correctly (renormalization scale ##\mu##). The results are:
$$
\begin{align*}
\mathcal{M}_{4}^{\mathrm{EFT}} &=-C_{4}+\frac{C_{4}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)] \\
&+\frac{3 C_{4}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{C_{6} m^{2}}{32 \pi^{2} M^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+1\right)\\\\
\mathcal{M}_{4}^{\mathrm{UV}} & \approx-\lambda_{0}+\frac{3 \lambda_{0}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{m^{2}}\right)+2\right)+\frac{3 \lambda_{2}^{2}}{32 \pi^{2}}\left(\log \left(\frac{\mu^{2}}{M^{2}}\right)\right)+\frac{m^{2} \lambda_{2}^{2}}{48 \pi^{2} M^{2}} \\
&+\frac{\lambda_{0}^{2}}{32 \pi^{2}}[f(s, m)+f(t, m)+f(u, m)].
\end{align*}
$$

The matching at tree-level resulted in:
$$m^2=m_L^2,\qquad C_4 = \lambda_0,\qquad C_6=0.$$
I would now like to perform the matching at one-loop, i.e. we demand ##\mathcal{M}_4^{EFT}= \mathcal{M}_4^{UV}+O(M^{-4})##.

Problem
We have two unknowns, ##C_4## and ##C_6##, that need to be expressed in terms of ##\lambda_0, \lambda_2, m, M,## etc. But ##\mathcal{M}_4^{EFT}= \mathcal{M}_4^{UV}+O(M^{-4})## gives us only one equation.. I don't see how we can determine both coefficients with only the above information.

Notes
I'm reading Adam Falkowski's lecture notes, see here. In section 2.3, p. 24, he performs the matching with only the above information and determines ##C_4##... I don't see how that is supposed to work.
Did you take into consideration the fact that the log terms must match and that the constant pieces must also match? This gives two independent relations.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K