How to evaluate the effective mass tensor (band structure)

Click For Summary

Homework Help Overview

The discussion revolves around evaluating the effective mass tensor for a 3D crystal based on its energy-band dispersion relation. The original poster presents the energy expression and seeks to determine the effective mass tensor at the point where the wave vector \(\mathbf k\) equals zero.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the need to compute the second-order derivatives of the energy expression to find the effective mass tensor. There are questions about how to apply the formula correctly and whether the approach taken is valid.

Discussion Status

Some participants have provided guidance on applying the formula for the effective mass tensor, while others are exploring different combinations of indices for the derivatives. There is an ongoing examination of the calculations and interpretations of the results, with no explicit consensus reached yet.

Contextual Notes

Participants note that the concept of effective mass was introduced in lectures but without practical application examples, leading to uncertainty in how to proceed with the calculations. There is also mention of the original poster's unfamiliarity with tensors, which may affect their understanding of the problem.

LesterTU
Messages
6
Reaction score
0

Homework Statement


The energy-band dispersion for a 3D crystal is given by

$$E(\mathbf k) = E_0 - Acos(k_xa) - Bcos(k_yb) - Ccos(k_zc)$$
What is the value of the effective mass tensor at ## \mathbf k = 0 ##?

Homework Equations


The effective mass tensor is given by

$$ \left( \frac{1}{m^*} \right)_{ij} = \frac{1}{\hbar ^2} \frac {\partial^2 E(\mathbf k)} {\partial k_i \partial k_j}$$
where ## i,j = x, y, z. ##

The Attempt at a Solution


I guess I'm supposed to carry out the second order derivative of the expression for the energy in order to find the effective mass, but I don't know how to actually evaluate it. Can someone tell me how to do it please!
 
Physics news on Phys.org
LesterTU said:

Homework Statement


The energy-band dispersion for a 3D crystal is given by

$$E(\mathbf k) = E_0 - Acos(k_xa) - Bcos(k_yb) - Ccos(k_zc)$$
What is the value of the effective mass tensor at ## \mathbf k = 0 ##?

Homework Equations


The effective mass tensor is given by

$$ \left( \frac{1}{m^*} \right)_{ij} = \frac{1}{\hbar ^2} \frac {\partial^2 E(\mathbf k)} {\partial k_i \partial k_j}$$
where ## i,j = x, y, z. ##

The Attempt at a Solution


I guess I'm supposed to carry out the second order derivative of the expression for the energy in order to find the effective mass, but I don't know how to actually evaluate it. Can someone tell me how to do it please!
You just need to actually apply the equation. First pick two values for ##i,j##, let's say ##i=j=x## and apply the formula exactly as it is written. Let us know if it is still unclear.
 
nrqed said:
You just need to actually apply the equation. First pick two values for ##i,j##, let's say ##i=j=x## and apply the formula exactly as it is written. Let us know if it is still unclear.

So you take the second derivative of ##E(\mathbf k)## with respect to all nine combinations of ##i, j##, and add them together? The cross terms would vanish, and we are left with

$$ \frac {\partial^2 E(\mathbf k)} {\partial k_x \partial k_x} = Aa^2cos(k_xa)$$

and similarly for yy and zz. Thus

$$ \left( \frac{1}{m^*} \right)_{ij} = \frac{1}{\hbar ^2} \left( Aa^2cos(k_xa) + Bb^2cos(k_yb) + Cc^2cos(k_zc) \right) $$

Is this correct?
 
LesterTU said:
So you take the second derivative of ##E(\mathbf k)## with respect to all nine combinations of ##i, j##, and add them together? The cross terms would vanish, and we are left with

$$ \frac {\partial^2 E(\mathbf k)} {\partial k_x \partial k_x} = Aa^2cos(k_xa)$$

and similarly for yy and zz.
This is correct.

Thus

$$ \left( \frac{1}{m^*} \right)_{ij} = \frac{1}{\hbar ^2} \left( Aa^2cos(k_xa) + Bb^2cos(k_yb) + Cc^2cos(k_zc) \right) $$

Is this correct?
No. You must pick values of i,j to be able to write an explicit expression on the right. From your calculation above, you get that
$$\left( \frac{1}{m^*} \right)_{xx} = \frac{1}{\hbar ^2} \left( Aa^2cos(k_xa)\right) $$
Now you have to write separately the other expressions for yy and zz.
 
So at ##\mathbf k = 0##, we get

$$\left( m^* \right)_{xx} = \frac{\hbar ^2}{Aa^2} \ \ \ \ \ \ \left( m^* \right)_{yy} = \frac{\hbar ^2}{Bb^2} \ \ \ \ \ \ \left( m^* \right)_{zz} = \frac{\hbar ^2}{Cc^2}$$

Does this answer the question "What is the value of the effective mass tensor ## \left( m^* \right)_{ij}## where ## (i, j = x, y, z)## at ##\mathbf k = 0##"?
 
LesterTU said:
So at ##\mathbf k = 0##, we get

$$\left( m^* \right)_{xx} = \frac{\hbar ^2}{Aa^2} \ \ \ \ \ \ \left( m^* \right)_{yy} = \frac{\hbar ^2}{Bb^2} \ \ \ \ \ \ \left( m^* \right)_{zz} = \frac{\hbar ^2}{Cc^2}$$

Does this answer the question "What is the value of the effective mass tensor ## \left( m^* \right)_{ij}## where ## (i, j = x, y, z)## at ##\mathbf k = 0##"?
Yes. Good job.
 
Thank you very much!

They introduced the concept of effective mass in the lectures by stating the definition and giving us an intuitive feel for what it is based on the curvature of the bands, but they never told us how to actually apply it in practice or showed a concrete example, yet this was on an old exam for an introductory course in solid state. I have never encountered a tensor before...
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 30 ·
2
Replies
30
Views
4K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K