I How to introduce dissipation to a spinning top

AI Thread Summary
The discussion focuses on modifying the Lagrangian of an axisymmetric spinning top to account for dissipation at the pivot point. It emphasizes that the Lagrangian cannot be altered directly for dissipative systems, as they do not conform to Hamiltonian mechanics. Instead, general equations are suggested to describe the system's dynamics, incorporating a dissipation torque. The relationship between the generalized forces and the velocities is highlighted, indicating that dissipation results in non-positive work. Overall, the conversation centers on the complexities of incorporating dissipation into the Lagrangian framework.
etotheipi
A axisymmetric spinning top is pivoted at O. The components of the inertia tensor ##I_O## at the point ##O##, with respect to the principal axes, are denoted ##A##, ##A## and ##C##. It's Lagrangian is$$\mathcal{L}(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2} A\dot{\theta}^2 + \frac{1}{2}A(\dot{\phi} \sin{\theta})^2 + \frac{1}{2}C(\dot{\psi} + \dot{\phi} \cos{\theta})^2 - mgh\cos{\theta}$$How can the Lagrangian be modified to account for dissipation at the pivot? We can't use the Rayleigh function here, because that is for velocity-dependent dissipation. Are there some references?
 
Physics news on Phys.org
etotheipi said:
How can the Lagrangian be modified to account for dissipation at the pivot?
You can not modify the Lagrangian in such a way because the system with dissipation is not a Hamiltonian system. Use general equations:
$$\frac{d}{dt}\frac{\partial L}{\partial \dot x^i}-\frac{\partial L}{\partial x^i}=Q_i(t,x,\dot x)$$
Dissipation means that ##Q_i\dot x^i\le 0##

If say you apply a dissipation torque ##\boldsymbol \tau## then
$$Q_i=\Big(\boldsymbol\tau,\frac{\partial\boldsymbol\omega}{\partial\dot x^i}\Big)$$
 
Last edited:
  • Informative
  • Like
Likes vanhees71 and etotheipi
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top