I How to measure average thermal conductivity of a metallic material?

  • I
  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Thermodynamics
AI Thread Summary
Heat conduction is the transfer of energy between adjacent material elements due to temperature differences, described by the fundamental law of heat conduction. Experiments demonstrate that the heat flow through a slab is proportional to the area and the temperature gradient, leading to the equation for thermal conductivity, K. To measure thermal conductivity in metals, a bar is heated at one end while the other end is cooled, with heat loss calculated by measuring the temperature change in water. Accurate measurements require thermocouples placed at a distance apart to avoid erroneous readings and ensure steady-state conditions are achieved before recording data. Understanding these principles is crucial for accurate thermal conductivity assessments.
zenterix
Messages
774
Reaction score
84
TL;DR Summary
How exactly does this experiment to measure average thermal conductivity of a metallic slab work?
Heat conduction is the transport of energy between neighboring volume elements in a material as a result of the temperature difference between them.

The "fundamental law of heat conduction", as it is called in the book I am reading, is a "generalization of the results of experiments on the linear flow of heat through a slab perpendicular to the faces".

Pictorially, such experiments do the following

1699738959320.png

The blue rectangular box represents a slab of a material of thickness ##\Delta x## and the area of the side faces is ##A##. One face is maintained at temperature ##T## and the other at ##T+\Delta T##.

The heat that flows perpendicular to the faces for a time ##t## is measured.

The same experiment is repeated by keeping the material the same and varying ##\Delta x## and ##A##.

These experiments lead to the following result

$$\frac{Q}{t} \propto A\frac{\Delta T}{\Delta x}\tag{1}$$

which is approximately true for finite ##\Delta T## and ##\Delta x## and rigorously true when these are infinitesimals.

In this limit, we obtain

$$\frac{dQ}{dt}=-KA\frac{dT}{dx}\tag{2}$$

where the ##dQ## is an inexact differential (I don't know how to write the correct symbol in latex).

The derivative ##dT/dx## is the temperature gradient, ##K## is the thermal conductivity.

My question is about measurement of thermal conductivity.

Here is the experiment for a metal.

The metal is made into the form of a bar, one end is heated electrically, the other end is cooled with a stream of water. The surface of the bar is thermally insulated.

Heat loss through the insulation is calculated by subtracting the rate at which heat enters the water from the rate at which electrical energy is supplied.

The equation used to determine the average thermal conductivity within the given temperature range is

$$K=\frac{L}{A(T_1-T_2)}\frac{dQ}{dt}\tag{3}$$

where again, ##dQ## is an inexact differential.

The temperature difference is measured with thermocouples at two places a distance ##L## apart.

Here is what I think happens

- The amount of heat provided during a certain time to one end of the metal is known (how does one control the amount of heat?). This is ##dQ/dt##.

- ##L## and ##A## are fixed

- The only thing measured is the "temperature difference". This temperature difference seems to be that between the two metallic faces.

However, it also seems that one somehow measures heat entering the water as well. How does one do this?

Does it involve also measuring the temperature difference of the water?
 
Physics news on Phys.org
zenterix said:
The only thing measured is the "temperature difference". This temperature difference seems to be that between the two metallic faces.
No. The temperature difference is the difference between the readings of the thermocouples that are placed distance ##L## apart. I wouldn't place the thermocouples at the ends of the block where the heat source and sink are because you are likely to get erroneous readings.
zenterix said:
Does it involve also measuring the temperature difference of the water?
Yes, you need to do some calorimetry to find out how much heat enters the water per unit time. The equation for ##K## assumes that no heat is lost as it travels from one end to the other.

Also, you should not record any measurements until you are sure that the steady state is reached. How are you going to figure out when this happens?
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top