B How to multiply matrix with row vector?

entropy1
Messages
1,232
Reaction score
72
How do I calculate a 3x3 matrix multiplication with a 3 column row vector, like below?

##
\begin{bmatrix}
A11 & A12 & A13\\
A21 & A22 & A23\\
A31 & A32 & A33
\end{bmatrix}\begin{bmatrix}
B1 & B2 & B3
\end{bmatrix}
##
 
Last edited:
Physics news on Phys.org
You can only multiply matrix times column or row times matrix.
$$
\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}\cdot
\begin{pmatrix}b_{1}\\b_{2}\\b_{3}\end{pmatrix}=
\begin{pmatrix}a_{11}b_{1}+a_{12}b_{2}+a_{13}b_{3}\\a_{21}b_{1}+a_{22}b_{2}+a_{23}b_{3}\\a_{31}b_{1}+a_{32}b_{2}+a_{33}b_{3}\end{pmatrix}
$$
 
  • Like
Likes scottdave and jim mcnamara
The "inner dimensions" must match. A column vector is a 3x1 [3 rows by 1 column] while a row vector is a 1x3 matrix.

Use the outer dimensions to get dimension of the resulting matrix.

So you can multiply a (1x3) by a (3x3) and get a 1x3.

Multiply a 1x3 by a 3x1 and get a 1x1... essentially the same as dot product of two vectors
 
  • Like
Likes DeBangis21 and FactChecker
I guess you can use various tricks, like assuming your row vector is the first row of a 3X3 matrix with zeros in the other places, or that the matrix on the left is made up of three “independent” column vectors, etc. However, you have to ask yourself what mathematical or physical objects do I get from such tricks?
 
Last edited:
apostolosdt said:
However, you have to ask yourself what mathematical or physical objects do I get from such tricks?
That's the point! It is important to understand the rule: 'row times column'. This has a meaning in itself, so "tricks" may cause more confusion than they solve. E.g.
$$
\begin{pmatrix}a&b&c\end{pmatrix}\cdot \begin{pmatrix}x\\y\\z\end{pmatrix} =\bigl \langle \begin{pmatrix}a&b&c\end{pmatrix}\, , \,\begin{pmatrix}x&y&z\end{pmatrix} \bigr\rangle = ax+by+cz \in \mathbb{R}
$$
is a number, e.g. a real number if the vectors have real components, whereas
$$
\begin{pmatrix}a\\b\\c\end{pmatrix}\cdot \begin{pmatrix}x&y&z\end{pmatrix}=\begin{pmatrix}a\\b\\c\end{pmatrix}\otimes \begin{pmatrix}x&y&z\end{pmatrix}=\begin{pmatrix}ax&ay&az\\bx&by&bz\\cx&cy&cz\end{pmatrix} \in \operatorname{M}(2,\mathbb{R})
$$
is a rank-##1## matrix, i.e. e.g. a ##(1,1)##-tensor.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
27
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
6K