How to prove by mathematical induction?

AI Thread Summary
The discussion centers on proving a formula using mathematical induction, specifically the equation (5n + 2) = 2[(5/2)n + 1]. The user expresses confusion about the induction process and requests examples and resources for clarity. They outline their approach, detailing the base case and the assumption for n = k, but struggle with the transition to n = k + 1. After attempting to simplify their equation, they find inconsistencies, prompting further inquiry into their mistake. Ultimately, they confirm that the equation holds true for all non-negative integers through the induction process.
James2
Messages
35
Reaction score
0
How do I prove a formula/rule or something by mathematical induction? Please give me a few examples or resources and explain it as best you can because I think I'm messing up some how.
 
Mathematics news on Phys.org
What are you not getting, exactly? If you just don't know what induction is, surely a google search would be faster than starting a new thread.
 
Everything I read confuses me, it tells me to do something different everytime...
 
James2 said:
Everything I read confuses me, it tells me to do something different everytime...

We can't help you if you don't explain what's confusing you. Try posting your attempt at solving an induction problem and explain where you get stuck.
 
I have an equation, (5n + 2) = 2[(5/2)n + 1] I know this is true from the basis step. Then I asume n = k now I must prove n = k + 1. So, (5k + 2) = 2[(5/2)k + 1]

Alright then, I try to substitute k + 1 in and add it or something so I get... 2[(5/2)k + 1] + [5(k + 1) + 2] = 2 [(5/2)(k + 1) + 1]

Simplifying, I get 10k + 2 + 5k + 5 + 2 = 10(k + 1) + 2

And finallly, 15k + 9 =/= 10k + 12

SO... whaaaat? What happened here?
 
(5n + 2) = 2[(5/2)n + 1]

n = 0:
5*0 + 2 = 2[(5/2)*0 + 1]

The case is true for 0.

Suppose the case is true for n = k.
Now we can use (5k + 2) = 2[(5/2)k + 1].

n = k + 1:
5(k + 1) + 2 = (5k + 2) + 5 = 2[(5/2)k + 1] + 5 = 2[(5/2)k + 1 + 5/2] = 2[(5/2)(k+1) + 1]

The case n = k + 1 follows from the case n = k.
With case n = 0 true the equation therefore works for all non-negative integers.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top