How to select stepper motor for a Z-axis application with Ballscrew

AI Thread Summary
Selecting a stepper motor for a Z-axis application with a ballscrew requires careful consideration of the load, including the weight of the build platform and resistive forces during operation. The total weight to lift is estimated at 6.6 kg, and while a stepper motor with 1.8 Nm holding torque has been sourced, calculations suggest that a minimum of 0.04 Nm may suffice, indicating potential over-engineering. It's essential to account for friction from components like ball screw bearings and to differentiate between holding torque and detent torque, as the latter is crucial for maintaining position without continuous power. Ignoring acceleration is acceptable for slow-speed applications, but friction must be included when calculating the torque needed to lift the load. Proper torque calculations are vital for optimal motor selection in 3D printing applications.
Vatech
Messages
53
Reaction score
7
TL;DR Summary
it is needed to select stepper motor for a Z-axis application with Ballscrew.
we suppose as knowing data that the z axis is verstical and the load is 6.6kg.
I build a Z-axis (not the one displayed on image). The weight of the Buildplatform is 2.29kg and is going to be used on a MSLA printer, so the weight might get increased 1kg additionally, so 3.29kg. The problem is that when detached from the printed model from Fep film there is a resistive force, this needs tools and test to be calculated so this is unknown data for the time.
That’s why i would like to be able to lift double the weight , meaning 6.6kg.
The ball screw is a SFU1204 , meaning 4mm travel per full rotation. Friction

1632326628795.png


I sourced experimental a stepper that has 1.8N holding torque, but how could i calculated the minimum Holding torque of the stepper motor needed to lift up the platform?

1632326436058.png
 
Engineering news on Phys.org
Better check your inputs. I have seen ball screws with 4 mm lead, but never one with 0.4 mm lead.

When sizing a stepper motor for a slow speed drive, such as a 3D printer build stage, you can ignore acceleration. With a ball screw drive, include friction when moving up. Sources of friction include the ball screw bearings, the ball nut, and the stage bearings.

Assume zero friction when holding and when moving down. This will be somewhat conservative, but is good practice with the low friction of a ball screw drive.
 
jrmichler said:
Better check your inputs. I have seen ball screws with 4 mm lead, but never one with 0.4 mm lead.

When sizing a stepper motor for a slow speed drive, such as a 3D printer build stage, you can ignore acceleration. With a ball screw drive, include friction when moving up. Sources of friction include the ball screw bearings, the ball nut, and the stage bearings.

Assume zero friction when holding and when moving down. This will be somewhat conservative, but is good practice with the low friction of a ball screw drive.
Sorry for misstyping the 4mm
1632374462003.png

and this are the specs of my motor
1632374540108.png

By the above calculation is needed a Stepper with at least 0.04Nm Holding Torque? So in my case the 1.8Nm is a bit too much? OverEngineered?
 
Vatech said:
So in my case the 1.8Nm is a bit too much?
Maybe.
You have calculated the Running Torque to move the load.
You should also consider the Detent Torque, if any (not all stepper designs have any), and the Holding Torque.

Unless you plan to keep the motor energized to hold the load, it is the Detent Torque that will keep the load where you put it.

A quick explanation is at:
https://www.motioncontroltips.com/faq-whats-the-difference-between-detent-torque-and-holding-torque/

(above found with:
https://www.google.com/search?&q=stepper+motor+holding+torque)

Cheers,
Tom
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top