How to Solve POTW #206 Using Contour Integration?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The discussion centers on solving Problem of the Week (POTW) #206 using contour integration techniques. The integral in question is $$\int_{-\infty + i\alpha}^{\infty + i\alpha} e^{-x^2}\, dx$$ for all values of $\alpha \ge 0$. The problem remains unanswered in the forum, indicating a need for further exploration and solutions related to contour integration methods in complex analysis.

PREREQUISITES
  • Contour integration techniques in complex analysis
  • Understanding of complex variables
  • Familiarity with Gaussian integrals
  • Knowledge of the residue theorem
NEXT STEPS
  • Study the application of the residue theorem in contour integration
  • Explore Gaussian integrals and their properties
  • Research methods for evaluating integrals along complex paths
  • Learn about the implications of varying $\alpha$ in complex integrals
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced integration techniques will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
By method of contour integration, find the values of the integrals

$$\int_{-\infty + i\alpha}^{\infty + i\alpha} e^{-x^2}\, dx$$

for all $\alpha \ge 0$.
-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem. You can view my solution below.
For $\alpha = 0$, the integral is $\int_{-\infty}^\infty e^{-x^2}\, dx = \sqrt{\pi}$. Let $\alpha > 0$ and $R > 0$. Consider the contour integral $\int_{\Gamma(R,\alpha)} e^{-z^2}\, dz$, where $\Gamma(R,\alpha)$ is the rectangle $\{z = x + iy: -R \le x \le R, 0 \le y \le \alpha\}$. Since $z\mapsto e^{-z^2}$ is an entire function, Cauchy's theorem gives $\int_{\Gamma(R,\alpha)} e^{-z^2}\, dz = 0$. Furthermore, the integrals of $e^{-z^2}$ along the vertical edges of $\Gamma(R,\alpha)$ are dominated by $Ce^{-R^2}$, where $C = \int_0^\alpha e^{t^2}\, dt$. Hence

$$\int_{-R +i\alpha}^{R + i\alpha} e^{-z^2}\, dz = \int_{-R}^R e^{-x^2}\, dx + O(e^{-R^2})\quad\text{as}\quad R\to \infty$$

Letting $R\to \infty$ yields

$$\int_{-\infty + i\alpha}^{\infty +i\alpha} e^{-z^2}\, dz = \int_{-\infty}^\infty e^{-x^2} = \sqrt{\pi}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K