MHB How to solve the integral of 1+tanx using partial fraction decomposition?

  • Thread starter Thread starter Lorena_Santoro
  • Start date Start date
  • Tags Tags
    Approach
Click For Summary
The integral of \( \frac{1}{1+\tan x} \) can be solved by substituting \( u = \tan x \), leading to \( dx = \frac{1}{1+u^2} du \). This transforms the integral into a form suitable for partial fraction decomposition. The resulting expression is simplified to \( \frac{1}{1+u} \cdot \frac{1}{1+u^2} \), which can be decomposed into manageable parts. The final solution is expressed as \( \frac{1}{2} \ln(1+\tan x) - \frac{1}{4} \ln(1+\tan^2 x) + \frac{1}{2} x + C \). This method effectively demonstrates the application of substitution and partial fraction decomposition in solving the integral.
Lorena_Santoro
Messages
22
Reaction score
0
\( \int\frac{dx}{1+tanx} \)
 
Physics news on Phys.org
Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$
 
Klaas van Aarsen said:
Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$
Thank you very much!
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K