MHB How to solve the integral of 1+tanx using partial fraction decomposition?

  • Thread starter Thread starter Lorena_Santoro
  • Start date Start date
  • Tags Tags
    Approach
Click For Summary
The integral of \( \frac{1}{1+\tan x} \) can be solved by substituting \( u = \tan x \), leading to \( dx = \frac{1}{1+u^2} du \). This transforms the integral into a form suitable for partial fraction decomposition. The resulting expression is simplified to \( \frac{1}{1+u} \cdot \frac{1}{1+u^2} \), which can be decomposed into manageable parts. The final solution is expressed as \( \frac{1}{2} \ln(1+\tan x) - \frac{1}{4} \ln(1+\tan^2 x) + \frac{1}{2} x + C \). This method effectively demonstrates the application of substitution and partial fraction decomposition in solving the integral.
Lorena_Santoro
Messages
22
Reaction score
0
\( \int\frac{dx}{1+tanx} \)
 
Physics news on Phys.org
Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$
 
Klaas van Aarsen said:
Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$
Thank you very much!
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K