alba_ei
- 38
- 1
Homework Statement
\int x \arctan x \, dx
The Attempt at a Solution
By parts,
u = \arctan x
dv = x dx
du = \frac{dx}{x^2+1}
v = \frac{x^2}{2}
\int x \arctan x \, dx = \frac{x^2}{2}\arctan x - \frac{1}{2} \int \frac{x^2}{x^2+1} \, dx
Again...by parts
u = x^2
dv = \frac{dx}{x^2+1}
du = 2x dx
v = arc tan x
\int x \arctan x \, dx = \frac{x^2}{2}\arctan x - \frac{x^2}{2}\arctan x - \int x \arctan x \, dx
I back to the beginning, what did wrogn?
\int x \arctan x \, dx = - \int x \arctan x \, dx
Last edited: