How to Solve the Laplace Equation for Potential Flow Around a Sphere?

happyparticle
Messages
490
Reaction score
24
Homework Statement
Consider the steady flow pattern produced when an impenetrable rigid spherical obstacle is placed in a uniformly flowing, incompressible, inviscid fluid. Find a solution for the potential flow around the sphere.
Relevant Equations
##\nabla^2 \phi = 0##
I tried to find a solution to the Laplace equation using spherical coordinates and the separable variable method. However, I found equations that I simply don't know how to find a solution. Thus, I tried in cylindrical coordinates with an invariance in ##\theta## but now I'm facing this equation.

##\frac{1}{s} \frac{d}{ds}(s \frac{dS}{ds}) = -k^2 S##

Is there a fairly simple solution for it or should I find another way to do this problem?
 
Physics news on Phys.org
I am not sure to distinguish S and s in your equation. Let me rewrite it with x for s and y for S
\frac{1}{x} \frac{d}{dx}(x \frac{dy}{dx}) = -k^2 y
Is it the right equation which has constant k with its physical dimension of [1/s] ? It belongs to Sturm -Liouville equation whose solutions are Bessel functions.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top