How to tell if Energy is Conserved from the Lagrangian?

  • Thread starter Thread starter penguin46
  • Start date Start date
  • Tags Tags
    Energy Lagrangian
Click For Summary
To determine if energy is conserved using the Lagrangian, one should differentiate partially with respect to time rather than fully. This approach aligns with the Beltrami identity, which states that if the Lagrangian is independent of time, energy is conserved. The partial derivative indicates that the Lagrangian is treated as an abstract function of independent variables. In contrast, a total derivative would imply that other variables depend on time, complicating the analysis. Understanding this distinction is crucial for applying Lagrangian mechanics effectively.
penguin46
Messages
19
Reaction score
0
Homework Statement
When attempting to determine if energy is conserved by looking at the Lagrangian for a system, one must differentiate wrt time to determine if the Lagrangian is constant in time. When doing this, does one take a partial time derivative or a total time derivative?
Relevant Equations
Lagrangian, Lagrangian equations of motion, multivariable chain rule
I am fairly certain that the answer here is to differentiate partially with respect to time rather than fully. In Landau and Lifshitz' proof of energy conservation one of the hypotheses is that the partial of L wrt time is zero. Am I on the right track?
 
Physics news on Phys.org
That’s right, yes. It’s an example of the Beltrami identity, whereby independence of the Lagrangian with respect to the independent variable implies a first integral (in this case the energy).
 
  • Like
Likes PhDeezNutz and vanhees71
penguin46 said:
Homework Statement:: When attempting to determine if energy is conserved by looking at the Lagrangian for a system, one must differentiate wrt time to determine if the Lagrangian is constant in time. When doing this, does one take a partial time derivative or a total time derivative?
Relevant Equations:: Lagrangian, Lagrangian equations of motion, multivariable chain rule

I am fairly certain that the answer here is to differentiate partially with respect to time rather than fully. In Landau and Lifshitz' proof of energy conservation one of the hypotheses is that the partial of L wrt time is zero. Am I on the right track?
To analyse the Lagrangian itself, we consider it an abstract function of independent variables. If (as an abstract function) it is independent of ##t##, then energy is conserved. That means taking the "partial" derivative.

To perform a "total" derivative, we would have to take the other (no-longer-independent) variables as functions of ##t##. To do that we would have to consider the Lagrangian as a time-dependent quantity that we calculate along a curve, say.

There's an important distinction between the roles of the Lagrangian in these two aspects of Lagrangian mechanics.
 
  • Like
Likes PhDeezNutz and vanhees71
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
6
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
7K
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
698
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K