Lorena_Santoro
- 22
- 0
\( \int\frac{dx}{1+tanx} \)
The integral of \( \frac{1}{1+\tan x} \) can be solved using substitution and partial fraction decomposition. By substituting \( u=\tan x \), the integral transforms into \( \int \frac{1}{1+u} \cdot \frac{1}{1+u^2} \, du \). The solution yields \( \frac{1}{2}\ln(1+\tan x) - \frac{1}{4}\ln(1+\tan^2 x) + \frac{1}{2}x + C \), where \( C \) is the constant of integration. This method effectively combines logarithmic and arctangent functions to arrive at the final result.
PREREQUISITESStudents and professionals in mathematics, particularly those focusing on calculus, as well as educators seeking effective methods for teaching integration techniques.
Thank you very much!Klaas van Aarsen said:Substitute $u=\tan x$, which means $x=\arctan u$ and $dx=\frac{1}{1+u^2}\,du$.
Follow up with partial fraction decomposition.
$$\begin{align}\int\frac{dx}{1+\tan x}&=\int \frac{1}{1+u}\cdot\frac{1}{1+u^2}\,du
=\int\Big(\frac{\frac 12}{1+u}+\frac{-\frac 12 u +\frac 12}{1+u^2}\Big)\,du
=\frac 12\ln(1+u)-\frac 14\ln(1+u^2)+\frac 12\arctan u + C \\
&=\frac 12\ln(1+\tan x)-\frac 14\ln(1+\tan^2 x) +\frac 12 x + C\end{align}$$