I I found 2 formulas about surface tension -- which one is correct?

AI Thread Summary
The discussion centers on two formulas for calculating surface tension, specifically for a solid disk and a thin ring. The formula for the disk is given as γ_disk = W/C, while for the ring it is γ_ring = W/2C, highlighting the difference in interface lengths. The reasoning behind this difference is explained through the analogy of surface tension as a distribution of tiny parallel springs, where the ring has a longer interface, necessitating a lower spring constant to support the same weight. The choice of formula depends on the specific scenario being analyzed. Understanding these derivations is crucial for applying the correct formula in practical situations.
samy4408
Messages
62
Reaction score
9
1666779837352.png

1666779865756.png
 
Physics news on Phys.org
Can you provide the context or references of how these formulas were derived?
 
kuruman said:
Can you provide the context or references of how these formulas were derived?
I found the first one by typing surface tension formula on google , and the second :
1666789001608.png
 
Which you use depends on what question you wish to answer. Say you have a solid disk and a very thin ring both of circumference ##C## and weight ##W## floating in a fluid. In the case of the disk, ##\gamma_{\text{disk}}=\dfrac{W}{C}##; in the case of the ring, ##\gamma_{\text{ring}}=\dfrac{W}{2C}.##

You can imagine the surface tension force as the resultant of a uniform distribution of tiny parallel springs around the length of the interface of the object and the fluid with ##\gamma## playing the role of the spring constant. The ring has twice as long an interface (on the inside and outside) as the disk and therefore twice as many springs. Thus, half the spring constant is required to support the same weight.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top