I have a question about Beta Decay

  • Thread starter Ryan Lucas
  • Start date
14
0
In Beta radioactive decay, how do quarks rearrange themselves in these situations? Do they do this?

ß+ : 1p (2u, 1d) + energy ==> 1n (2d, 1u) + 1e-

ß- : 1n (2d, 1u) ==> 1p (2u, 1d) + 1e- + energy

I believe I have these right. Positive Beta decay is "endothermic" while negative Beta decay is "exothermic", because a neutron is bigger than a proton plus and electron, and so due to the conservation of matter, and E=mc^2, energy must make up the loss in mass. Please correct me if I'm wrong!
 

Rade

Ryan Lucas said:
In Beta radioactive decay, how do quarks rearrange themselves in these situations? Do they do this?
ß+ : 1p (2u, 1d) + energy ==> 1n (2d, 1u) + 1e-
ß- : 1n (2d, 1u) ==> 1p (2u, 1d) + 1e- + energy
I believe I have these right. Positive Beta decay is "endothermic" while negative Beta decay is "exothermic", because a neutron is bigger than a proton plus and electron, and so due to the conservation of matter, and E=mc^2, energy must make up the loss in mass. Please correct me if I'm wrong!
Your equations at the macroscopic level are incomplete...you are missing the neutrino and its antimatter mirror, but the quark structure for P and N is OK:
For negatron B(-) decay:
N ==> P + B(-) + antineutrino + Q decay energy released.​
For positron B(+) decay:
P ==> N + B(+) + neutrino​
Positron decay is possible only when the mass of the parent is greater than daughter by 2 electron masses.
 

Related Threads for: I have a question about Beta Decay

  • Posted
Replies
8
Views
697
  • Posted
Replies
4
Views
3K
  • Posted
Replies
9
Views
2K
  • Posted
Replies
3
Views
547
  • Posted
Replies
5
Views
763
Replies
2
Views
244
  • Posted
Replies
2
Views
511
Replies
1
Views
2K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top