I2 Gas Molecules: Uncertainty in the Double Slit Experiment?

FredT
Messages
7
Reaction score
0
If buckyballs display uncertainty in the double slit experiment, shouldn't iodine gas molecules as well? An I2 molecule is certainly less massive than a buckyball. Yet why can we see I2 gas as a purple haze? I can see it, almost in the same way I can see my pencil, which has a very small uncertainty because it is a large object, yet the I2 molecules should all be independent, with large uncertainties, unlike my unified massive pencil.

Does what I'm saying make sense? And please bear with my ignorance, I'm new to quantum physics.

Thanks :-p
 
Physics news on Phys.org
What is the setup you are describing? Is it a double slit?
 
No, what I'm trying to say is that from what I've read about quantum mechanics, we shouldn't be able to see a single molecule because of the uncertainty involved with such a small object. Is this incorrect? I use the term "see" loosely because we technically couldn't "see" a single molecule because it couldn't scatter light. In fact, this is probably where I'm going wrong - it is the entire group of I2 molecules that scatters the light collectively, not each individual molecule.

My issue was just that individual molecules are made out by quantum physics to be mysterious wave-particle oddities that defy the laws of classical mechanics that seem so natural and make so much sense. And yet I can look into a flask and see a collection of I2 gas molecules as a purple haze. They are all independent molecules, not one solid object, but I can still observe them and they seem normal enough to me!

Perhaps I'm being ridiculous, but please excuse my lack of knowledge. I've only recently become interested in physics and don't have much experience outside the Physics 1 course I took last year (which was entirely classical, of course).

Thanks
 
A single molecule can and does scatter light. In fact, you can measure the amount of scattering to determine Avogadro's number.

But you do have an uncertainty in the location of the molecules, and their electronic state and so on. And that affects the scattering and light absorption/emission processes (e.g. natural line-broadening) I'm not sure what effect you're expecting? The uncertainty principle doesn't say you can't measure the position and momentum, it just puts a limit on how accurately they can be known at the same time.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top