IADPCFEVER's question at Yahoo Answers (projection and linear transformation)

Click For Summary
SUMMARY

The discussion focuses on demonstrating that the projection transformation from R2 to R2 onto the line y=x is a linear transformation. The transformation is represented by the matrix A = (1/2) * [[1, 1], [1, 1]], which projects any vector (x0, y0) onto the line. The proof confirms that this transformation satisfies the properties of linearity, as shown by the equation p(λv + μv') = λp(v) + μp(v').

PREREQUISITES
  • Understanding of linear transformations in vector spaces
  • Familiarity with matrix representation of transformations
  • Knowledge of R2 geometry and projections
  • Basic proficiency in solving systems of linear equations
NEXT STEPS
  • Study the properties of linear transformations in depth
  • Learn about matrix operations and their applications in transformations
  • Explore the concept of orthogonal projections in vector spaces
  • Investigate the implications of linearity in higher-dimensional spaces
USEFUL FOR

Students and educators in mathematics, particularly those studying linear algebra, as well as professionals in fields requiring geometric transformations and projections.

Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I'm supposed to show that this transformation from R^2 to R^2 is linear by showing that it is a matrix transformation.

P projects a vector onto the line y=x

How do I go about?

Here is a link to the question:

Projection and linear transformation? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Physics news on Phys.org
Hello IADPCFEVER,

Consider $(x_0.y_0)\in\mathbb{R}^2$. The perpendicular line to $r:y=x$ passing through $(x_0,y_0)$ is $s:y-y_0=-(x-x_0)$. The intersection point between $r$ and $s$ is:
$$\left \{ \begin{matrix}x-y=0\\x+y=x_0+y_0\end{matrix}\right.\Leftrightarrow\ldots\Leftrightarrow(x,y)=\left(\dfrac{x_0+y_0}{2},\dfrac{x_0+y_0}{2}\right)$$
That is, if $p:\mathbb{R}^2\to \mathbb{R}^2$ projects $(x_0,y_0)$ onto $r:y=x$ then,
$$p\begin{pmatrix}{x_0}\\{y_0}\end{pmatrix}= \dfrac{1}{2} \begin{pmatrix}{x_0+y_0}\\{x_0+y_0}\end{pmatrix}= \dfrac{1}{2} \begin{pmatrix}{1}&{1}\\{1}&{1}\end{pmatrix}\begin{pmatrix}{x_0}\\{y_0}\end{pmatrix}=A \begin{pmatrix}{x_0}\\{y_0}\end{pmatrix}$$
Now, we easily prove that $p$ is a linear map. For all $\lambda,\mu\in\mathbb{R}$ and for all $v=(x_0,y_0)^t$, $v'=(x'_0,y'_0)^t$ in $\mathbb{R}^2$:
$$p(\lambda v+\mu v')=A(\lambda v+\mu v')=\lambda Av+\mu Av'=\lambda p(v)+\mu p(v')$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K