MHB IADPCFEVER's question at Yahoo Answers (projection and linear transformation)

AI Thread Summary
The discussion focuses on demonstrating that a transformation projecting vectors from R^2 onto the line y=x is linear by expressing it as a matrix transformation. The transformation is defined mathematically, showing that the projection of a vector (x_0, y_0) results in the point ((x_0 + y_0)/2, (x_0 + y_0)/2). This projection can be represented using a matrix A, which confirms the linearity of the transformation. The proof involves verifying that the transformation satisfies the properties of linearity for any scalar multiples and vector additions. The conclusion establishes that the projection is indeed a linear map.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

I'm supposed to show that this transformation from R^2 to R^2 is linear by showing that it is a matrix transformation.

P projects a vector onto the line y=x

How do I go about?

Here is a link to the question:

Projection and linear transformation? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello IADPCFEVER,

Consider $(x_0.y_0)\in\mathbb{R}^2$. The perpendicular line to $r:y=x$ passing through $(x_0,y_0)$ is $s:y-y_0=-(x-x_0)$. The intersection point between $r$ and $s$ is:
$$\left \{ \begin{matrix}x-y=0\\x+y=x_0+y_0\end{matrix}\right.\Leftrightarrow\ldots\Leftrightarrow(x,y)=\left(\dfrac{x_0+y_0}{2},\dfrac{x_0+y_0}{2}\right)$$
That is, if $p:\mathbb{R}^2\to \mathbb{R}^2$ projects $(x_0,y_0)$ onto $r:y=x$ then,
$$p\begin{pmatrix}{x_0}\\{y_0}\end{pmatrix}= \dfrac{1}{2} \begin{pmatrix}{x_0+y_0}\\{x_0+y_0}\end{pmatrix}= \dfrac{1}{2} \begin{pmatrix}{1}&{1}\\{1}&{1}\end{pmatrix}\begin{pmatrix}{x_0}\\{y_0}\end{pmatrix}=A \begin{pmatrix}{x_0}\\{y_0}\end{pmatrix}$$
Now, we easily prove that $p$ is a linear map. For all $\lambda,\mu\in\mathbb{R}$ and for all $v=(x_0,y_0)^t$, $v'=(x'_0,y'_0)^t$ in $\mathbb{R}^2$:
$$p(\lambda v+\mu v')=A(\lambda v+\mu v')=\lambda Av+\mu Av'=\lambda p(v)+\mu p(v')$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top