It's a closed disk. But if by "cone" you mean baseless cone (i.e. a child's birthday party hat : http://www.utterwonder.com/archives/images/happy_birthday_party_hat-thumb.jpg ), then one can also say that A is a cone, since the two are homeomorphic.
Take C the cone with base a unit circle in the xy plane and vertex at say (0,0,1). Let also D be the unit disk centered at (0,0,0). Then the projection down on the xy-plane C-->D²:(x,y,z)-->(x,y,0) is the desired homeomorphism.
#5
Mikemaths
23
0
Could I do it using the circles
Ct = {(x; y) ∈ D2 | (x − t)2 + y2 = (1 − t)2} (t ∈ I)
to construct a homeomorphism f : A → D2