- #1

- 81

- 1

## Homework Statement

if Ʃa_n converges, with a_n > 0, then Ʃ(a_n)^2 always converges

## Homework Equations

n/a

## The Attempt at a Solution

I am at a complete loss. I have tried using partial sums, cauchy criterion, and I tried using ratio test which seems to work but I am not sure.

Since Ʃa_n converges then by ratio test

lim n->∞ a_n+1 / a_n < 1

Now we apply ratio test to Ʃ(a_n)^2

lim n→∞ (a_n+1)^2 / (a_n)^2 = (lim n→∞ a_n+1 / a_n)^2 < 1^2 = 1

Thus by ratio test Ʃ(a_n)^2 converges.

This working did not utilize the condition a_n > 0, so it seems suspect to me.