B If in a lift we can tell if acceleration is due to g or to a push

alba
Messages
140
Reaction score
4
does that affect the equivalence principle?
 
Physics news on Phys.org
Hello, Alba.
alba said:
does that affect the equivalence principle?
Yes you can :smile:.
Stephanus said:
Thank you very much
Okay...
The Earth radius from equator is 6378.1 km, let's call it r
https://en.wikipedia.org/wiki/Earth
or 6378.100m

This is what makes me irritated. I'm calculating 1.7 m against a 0.1 km rounding. But, I'll do it anyway...

##F = G \frac{M * \text{my weight} * kg }{r^2}##
...
##F = 9.80627 * N * \text{my weight}##
...
##a_{head} = 9.806264773##
##a_{feet} = 9.80627##
I don't know if my calculation is correct.
Thanks for the attentions.
You feet will feel 9.80627m/s acceleration on Earth and your head will feel 9.806264773m/s2
Because your head is farther from the centre of the gravity. But there's no such thing on elevator.

Okay, seriously. No!
That's the concept of Einstein Elevator. Light, everything works the same as on earth.
But not everything!
In Einstein Elevator the acceleration from your head and your feet is the same!
On Earth there's a very-very little different.
And I might add, your head is older than your feet, because your feet ages more slowly than your head.

But just ignore my number. See the answer of the staffs in my post.

Sincerely.
 
Stephanus said:
Hello, Alba.
Yes you can :smile:..
The whole post is based on the assumption that your feet-head axis is parallel to the radius of the source, which must no necessarily be the case.
But the point is not the a on your head or feet, the issue is that, whatever the difference, you can always tell when the F (or a) is coming from a push/pull i.e. on the inertial mass and not on the gravitational mass.

If Einstein knew that, what is the purpose of the example? More in general, how can our subjective perception or objective measurement of a phenomenon influes the actual state of the world?
 
alba said:
does that affect the equivalence principle?
In a small enough region you cannot tell why you are in an accelerating frame. If the region is large enough that the non-uniform nature of the gravitational field is measurable that will give the game away, but the equivalence principle does not apply to such a large region.
 
Let's put it this way. Assume you are comparing someone in Einstein's elevator to someone in small room on a rotating space station. Both feel a "force" holding them to the floor. Careful experiment can show that conditions in the two are not exactly identical, however, this does not mean that, fundamentally, they are not the same( both are cases of acceleration). If we keep increasing the radius of the space station while maintaining the same g-force in the room, the conditions in the room become a closer and closer match to that in the elevator and it becomes harder and harder to tell them apart. They begin to converge. The same thing happens if you make the size of the elevator and room smaller and smaller.

The same is true for gravity and the elevator. As you make the elevator smaller and smaller, the differences become harder and harder to measure and they tend to converge. On a fundamental level, they are equivalent.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Replies
21
Views
4K
Replies
10
Views
249
Replies
128
Views
10K
Replies
33
Views
2K
Replies
12
Views
2K
Back
Top