gleem said:
Yes to both. Perhaps I was sucked into an error by my approach. Can you see it?
##F \ne ma##
##\sum F = ma##
One can use an energy approach. But then should treat ##a## and ##\alpha## as unknowns to be determined.
You have ##F## (the applied force) and ##X## (the displacement of the center of mass) to work with. And you have the assumption of rolling without slipping.
If the center of mass is displaced by ##X## then the cumulative distance moved by the rod that is supplying force ##F## is ##2X##. The mechanical work supplied by ##F## is then obviously: ##W=2\vec{F} \cdot \vec{X}##.
If you like, you can interpret the work done as center of mass work ##W_\text{com} = FX## and mechanical work in the center of mass frame ##W_\text{mech} = \tau \theta##. Torque ##\tau## is given by ##FR## while rotation angle ##\theta## is given by ##\frac{X}{R}.## It follows that ##W_\text{mech} = FX## and by no coincidence, ##W_\text{tot} = W_\text{com} + W_\text{mech} = FX + FX = 2FX##
By the work-energy theorem, the final kinetic energy is equal to the initial kinetic energy plus the work done:##KE_\text{final} = 2FX##.
Final kinetic energy is also given by ##\frac{1}{2}mv^2 + \frac{1}{2}I \omega^2##
But rotation rate ##\omega## is ##\frac{v}{R}## and moment of inertia ##I## is ##\frac{2}{5}mR^2##. So we can substitute in and rewrite the previous equation as ##\frac{1}{2}mv^2 + \frac{1}{2} \frac{2}{5}mv^2## for a total of: $$KE = 2FX = 0.7 mv^2$$We can solve for ##v## and get:$$v = \sqrt{\frac{20FX}{7m}}$$Given the total distance covered and the final velocity we can do the boring work of determining the horizontal acceleration ##a## and the rotational acceleration ##\alpha##.
Let us go ahead and do that. Elapsed time ##t## is given by distance ##X## divided by average velocity ##\frac{v}{2}##. That gives us:$$t = \frac{X}{0.5\sqrt{\frac{20FX}{7m}}} = \sqrt{\frac{7mX}{5F}}$$Acceleration is then given by the change in velocity divided by the elapsed time. That gives us:$$a = \frac{v}{t} = \frac{\sqrt{\frac{20FX}{7m}}}{\sqrt{\frac{7mX}{5F}}} = \frac{10F}{7m}$$More directly, we could have simply used the fact that the "effective mass" of a rolling sphere is ##\frac{7}{5} = 1.4## times its regular mass and the fact that we have a 2:1 mechanical advantage.
Edit: Massive edit to add the equations.