MHB Image, Range, and Matrix of a Linear Transformation

SiddharthThakur
Messages
6
Reaction score
0
Question
Consider the linear transformation T(x1,x2,x3)= (2*x1 -2*x2- 4*x3 ,x1+2*x2+x3)
(a) Find the image of (3, -2, 2) under T.
(b) Does the vector (5, 3) belong to the range of T?
(c) Determine the matrix of the transformation.
(d) Is the transformation T onto? Justify your answer
(e) Is the transformation one-to one? Justify your answerPlease see the attachement.it will be more clear to you.
 

Attachments

Last edited:
Physics news on Phys.org
Thread closed until issue of helping with a graded assignment addressed. Please send me a PM or reply to the other thread SiddharthThakur. This is not to embarrass you, it's just MHB policy. Let's talk about this so we can help you as much as possible.
 
SiddharthThakur said:
Question
Consider the linear transformation T(x1,x2,x3)= (2*x1 -2*x2- 4*x3 ,x1+2*x2+x3)
(a) Find the image of (3, -2, 2) under T.
(b) Does the vector (5, 3) belong to the range of T?
(c) Determine the matrix of the transformation.
(d) Is the transformation T onto? Justify your answer
(e) Is the transformation one-to one? Justify your answerPlease see the attachement.it will be more clear to you.

(a) The image of $(3, -2, 2)$ here is simply plugging in $x_1=3$, $x_2=-2$ and $x_3=2$ into the expression you are given.

(b) You want to solve $$A \hspace{1 mm} \vec{x} = \left[ \begin{array}{c}5 \\ 3 \end{array}\right]$$. You can do that by the following method.

$$\left[ \begin{array}{ccc} 2 & -2 & 4\\ 1 & 2 & 3 \end{array}\right] \left[ \begin{array}{c}x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[ \begin{array}{c}5 \\ 3 \end{array}\right]$$

Change that to an augmented matrix and solve.
 
SiddharthThakur said:
Question
Consider the linear transformation T(x1,x2,x3)= (2*x1 -2*x2- 4*x3 ,x1+2*x2+x3)
(a) Find the image of (3, -2, 2) under T.
(b) Does the vector (5, 3) belong to the range of T?
(c) Determine the matrix of the transformation.
(d) Is the transformation T onto? Justify your answer
(e) Is the transformation one-to one? Justify your answer

Since the deadline for the assignment in question has passed, I will make some more comments on solving the problem so others can use the information in the future.

(а) $Т(3,-2,2)=(2(3)-2(-2)-4(2), 3+2(-2)+2)=(2,1)$

(b) To answer this we can start by answering part (c). The transformation matrix of $T$ is $\left[ \begin{array}{ccc} 2 & -2 & 4\\ 1 & 2 & 3 \end{array}\right]$ To find if the vector $[5,3]$ is in the range of $T$ we can solve the following matrix equation:

$$ \left[ \begin{array}{ccc} 2 & -2 & -4\\ 1 & 2 & 3 \end{array}\right] \left[ \begin{array}{c}x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[ \begin{array}{c}5 \\ 3 \end{array}\right]$$

I will leave the computation to the reader, but if you row-reduce the augmented matrix from the above equation then you'll find that the the system is consistent, thus there exists a solution and the vector $[5,3]$ is in the range of $T$.

(c) Answered above.

(d) The transformation matrix is composed of 3 column vectors in $\mathbb{R}^2$ and after noticing that there are two of them which are linearly independent it follows that $T$ is in fact onto $\mathbb{R}^2$. This can also be shown by using the fact that there is a pivot position in every row.

(e) We have three column vectors in $\mathbb{R}^2$, so at least one of them must be a linear combination of the other two so $T$ isn't one-to-one. We can see this fact when row-reducing the augmented matrix for part (b). The solution contains a free variable which means that there is more than one solution, which doesn't fit the definition of being one-to-one. Two ways to check this in general is the columns of the transformation matrix must be linearly independent and when row-reducing the augmented matrix to solve for any $\vec{b}$, there can't be any free variables.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top