Impedance Matching: The mathematical Conditions for Matching Network

AI Thread Summary
Impedance matching is essential for maximizing power transfer between a source with impedance Z_S and a load with impedance Z_L. The discussion focuses on the mathematical conditions required for effective impedance matching, specifically whether both Z^*_s = Z_in and Z_out = Z^*_L need to be satisfied simultaneously or if satisfying one condition is sufficient. It raises the question of whether achieving Z^*_s = Z_in automatically ensures Z_out = Z^*_L. The conversation emphasizes the conceptual nature of impedance matching rather than practical applications. Ultimately, the thread seeks clarity on the necessity of adjusting matching network components to meet both conditions.
The Tortoise-Man
Messages
95
Reaction score
5
Assume we have a network consisting of a source with impedance ##Z_S## and load with impedance ##Z_L## and
we want to perform impedance matching on them in order to obtain the maximum power transfer:

Zs Zl MATCH.png


Note that in practice there may occur sitations where causes more harm than profit (see eg Baluncore's example here: https://www.physicsforums.com/threa...g-when-the-transmitter-line-and-load.1009889/ ; see post #2)But the motivation of this question has pure conceptional nature; ie I'm not asking here IF it should be done but HOW it should be correctly done, if one has to do it.

In general, ##Z_S \neq Z_L^*##. So principally, what one do in order to match impedances, one places a matching network between source and load (the components which the matching network contains depend on concrete problem):

Zs Zl Matching Network.png


Indeed, the matching network can consist of resistive components, it might be a L- or T-network and and and... ) and one tries to adjust the parameters of the components of the matching network to satisfy certain matching conditions; see below.

Now having implemented the matching network in our circuit in order to impose the right mathematical conditions we introduce following two auxilary impedances: the input impedance ##Z_{in}## and output impedance ##Z_{out}## defined as follows:
Zs Zl Matching ZIN.png


Zs Zl Matching ZOUT.png
My question is: In order to obtain the impedance matching
for maximal power transfer which conditions should be satisfied?

##Z^*_s= Z_{in}##, ##Z_{out}= Z^*_L## or both simultaneously?

Or even more interesting question is: Assume we succeed in adaping the components within the matching network such that ##Z^*_s= Z_{in}## holds. Is then ##Z_{out}= Z^*_L##
automatically satisfied?

So the question is basically about if it really neccassary to adapt the components within the matching network such that they should satisfy both conditions ##Z^*_s= Z_{in}## AND ##Z_{out}= Z^*_L##, or is one of these conditions really redundant in the sense that it suffice to adjust the matching box only to satisfy ONE of them and the second is the satisfied automatically?
 
Engineering news on Phys.org
Thread closed temporarily as a potential repost of previous threads. Hopefully I can deal with this before the weekend.

The Tortoise-Man said:
Sorry, you are right, presumably sending a PM to you about how to continue the discussion there would have been a better option. I will keep that in mind.
 
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Back
Top