Implication of a set of zeros with positive measure

noowutah
Messages
56
Reaction score
3
I have a non-zero measured subset X\subseteq\mathbb{R}^{n} on which \sum_{i=1}^{n}\psi_{i}x_{i}=0 for all x=(x_{1},\ldots,x_{n}) in X. How can I show that \psi_{i}=0 for i=1,\ldots,n?
 
Physics news on Phys.org
A non-zero ψ_i for at least one i would allow to solve the sum equation for ...
This will eventually lead to a contradiction with "non-zero measure".
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top