Dale
Mentor
- 36,553
- 15,337
As is common in physics, there are multiple equivalent definitions. You may prefer the definition in terms of what is called the covariant derivative. Specifically, the proper acceleration can be defined as the covariant derivative of the tangent vector to an object's worldline along the worldline.GregAshmore said:3. Loosely speaking, the experience of proper acceleration corresponds to the experience of an unbalanced force. I think this is in agreement with the definition of proper acceleration as the phenomenon that occurs when there is a non-zero reading on an accelerometer. However, I personally am not a fan of a definition of a fundamental physical phenomenon that requires the use of a mechanism. It seems to me that this leads to getting bogged down in the details of the design of the mechanism. I'd rather talk about the underlying phenomenon that the mechanism is intended to measure. In engineering, we are constantly aware of the difference between theory (the ideal) and practice (the inability to make actual conditions to correspond to the ideal). Defining proper acceleration as the reading on an instrument blurs that distinction, in my opinion.
Here is a link on covariant derivatives:
http://en.wikipedia.org/wiki/Covariant_derivative#Derivative_along_curve
It is closely related to the concept of parallel transport:
http://en.wikipedia.org/wiki/Parallel_transport
And the concept of a connection:
http://en.wikipedia.org/wiki/Levi-Civita_connection
Sorry about the hard-to-digest math. It is the price you pay for getting rid of the accelerometer definition. It doesn't add anything new (so feel free to skip it until you are ready for GR); it just defines it mathematically instead of physically.
Personally, I prefer the accelerometer one for precisely reasons that you find objectionable. One problem with defining terms in general is that since there are always a finite number of terms you must always either wind up having circular definitions or undefined terms. In physics, we get around that by defining some terms experimentally. Proper time is the thing measured by a clock, distance is the thing measured by a rod, proper acceleration is the thing measured by an acclerometer. That accomplishes two things, first, it makes the link between the mathematical theory and the physical world more clear, and second it avoids the problem of leaving those things undefined. So, I personally prefer those kinds of "measurement based" definitions of fundamental quantities, but I recongnize that is a personal preference and alternative equivalent definitions are possible which hide the problem by pushing the measurements further away or embrace the problem by leaving some things completely undefined.
As I explained to harrylin, it doesn't. If you say "A causes B" then that means that the presence of A implies B. So, if we say that "a force applied to the rocket causes the Earth and all the stars to move" that means that a force applied to the rocket implies that the Earth and all the stars must move. In an inertial frame, there may be a force on the rocket without movement of the Earth, so the force on the rocket does not imply movement of the Earth. Therefore the force on the rocket does not cause the Earth to move.GregAshmore said:How is it that a force applied to the rocket causes the Earth and all the stars to move? Einstein's proposal is that a gravitational field is the cause. Granting that point for the sake of discussion, one must still ask how the rocket produces enough energy to accelerate the immense mass of the Earth and stars at the observed rate.
So what does cause the Earth to move? The answer is that specific choice of non-inertial coordinates. That choice of coordinates implies that the Earth moves, regardless of the presence or absence of any rockets with any forces. Every time you use that choice of coordinates the Earth moves. So the choice of coordinates causes the Earth to move, not the rocket.
SR doesn't predict that an accelerometer in free fall will indicate a large acceleration. If you insist in this thread instead of starting it as a topic, I'll start that topic for you.