Inclined plane with pulley and spring

Click For Summary
SUMMARY

The discussion centers on the dynamics of a mass-spring-pulley system, specifically analyzing the forces acting on mass m_p and the effects of the spring constant k and pulley moment of inertia I_0. The participants derive equations using the Work-Energy Theorem and Newton's second law, leading to expressions for acceleration a and tension T. Key conclusions include the importance of correctly identifying the signs in the equations and the necessity of considering the mass of the pulley in the overall dynamics.

PREREQUISITES
  • Understanding of the Work-Energy Theorem
  • Familiarity with Newton's laws of motion
  • Knowledge of oscillatory motion and spring dynamics
  • Basic principles of rotational dynamics, including moment of inertia
NEXT STEPS
  • Explore the derivation of the Work-Energy Theorem in mechanical systems
  • Learn about the dynamics of coupled oscillators and their applications
  • Study the effects of rotational inertia on system dynamics
  • Investigate advanced topics in spring-mass systems, including damping and resonance
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in the dynamics of oscillatory systems and the interplay between linear and rotational motion.

lorenz0
Messages
151
Reaction score
28
Homework Statement
Consider a pulley which is a ring of radius ##r##.
1) Find the moment of inertia of the pulley with respect to an axis through its center and perpendicular to its plane, knowing that the work needed to make the pulley rotate with angular momentum ##L## around this axis is ##W##.
Now this pulley is placed on a frictionless inclined plane of angle ##\alpha##, and an ideal rope connects a mass ##m_p## to a spring placed vertically to the left of the inclined plane, and with one end attached to the ground.
2) Find the length of the spring at equilibrium.
Starting from the equilibrium position we give to mass ##m_p## a speed ##v_i## parallel to the inclined plane and downwards.
If the rope doesn't slide on the pulley and always remains taut, find:
3) Period of the oscillation of the system.
4) The maximum and minimum value of the tension applied to the spring and to mass ##m_p##.
5) The maximum value of the kinetic energy of the system.
Relevant Equations
##\sum_{i}\vec{F}_i=m\vec{a},\ W=\Delta K=K_f-K_i,\ F_{spring}=-ks,\ T=\frac{2\pi}{\omega}.##
1) By the Work-Energy Theorem, ##W=K_f-K_i=\frac{1}{2}I_{0}\omega^2=\frac{L^2}{2I_0}.##
2) By assuming that the initial length of the spring is ##0##, calling its final length ##S## and ##T## the tension in the rope connecting the pulley and mass ##m_p## I have: ##\begin{cases}(kS-T)r=0\\ m_p g\sin(\alpha)-T=0 \end{cases}## which gives ##S=\frac{m_pg\sin (\alpha)}{k}.##
3) mass ##m_p## oscillates around the equilibrium position, so by denoting ##s## the displacement of ##m_p## from the equilibrium position I get ##-ks=m_p s''\Rightarrow s''=-\frac{k}{m_p}s\Rightarrow \omega=\sqrt{\frac{k}{m_p}}\Rightarrow T=\frac{2\pi}{\omega}=2\pi\sqrt{\frac{m_p}{k}}. ##

Is it justifiable to ignore ##T## and ##-ks## since they "cancel out" each other because of the motion starting from the equilibrium position found before?

Thanks.
 

Attachments

  • inclined plane.png
    inclined plane.png
    39.4 KB · Views: 187
Physics news on Phys.org
What about the pulley and its effect on the frequency? They should have given you a value for the mass of the pulley=call it ## m_o ##.

In addition, for part (3), I think the forces on ## m_p ## are more complex than what you have. On ## m_p ## you have the tension from the rope, and the force of gravity, i.e. the component along the incline. You then have the tension in the rope, (that is not the same everywhere), affected by how much the spring is stretched, along with a part that is taken up by the angular acceleration of the pulley.

Suggestion is to write the forces ## F ## on ## m_p ##, so that ## F=m_p s'' ## with tension ## T=-ks-torque/r ##, where ## torque=dL/dt ##, etc.
 
Last edited:
Charles Link said:
What about the pulley and its effect on the frequency? They should have given you a value for the mass of the pulley=call it ## m_o ##.

In addition, for part (3), I think the forces on ## m_p ## are more complex than what you have. On ## m_p ## you have the tension from the rope, and the force of gravity, i.e. the component along the incline. You then have the tension in the rope, (that is not the same everywhere), affected by how much the spring is stretched, along with a part that is taken up by the angular acceleration of the pulley.
From ##\begin{cases}(ks-T)r=I_0 \alpha=\frac{I_0}{r}a\\ T-m_p g\sin(\alpha)=m_p a \end{cases}## I get ##a=-\frac{m_p}{m_p+\frac{I}{r^2}}g\sin(\alpha)+\frac{k}{m_p+\frac{I_0}{r^2}}s## so ##\omega=\sqrt{\frac{k}{m_p+\frac{I_0}{r^2}}}## thus ##T=\frac{2\pi}{\omega}=\frac{2\pi}{\sqrt{\frac{k}{m_p+\frac{I_0}{r^2}}}}## but I am unsure about whether I have chosen the correct positive and negative signs of the various quantities.
 
Last edited:
Very good. :) Let ## T ## be positive: ## T=ks-I_o s''/r^2 ## and ## m_p g \sin{\alpha}-T=m_p s'' ##. I agree with your first expression, but I think the signs are incorrect on the second.
(## s ## is positive to the right, down the incline).

Edit: We later determined the first expression should read ## T=ks+I_o s''/r^2 ##. See posts 8 and 9 below.
 
Last edited:
  • Like
Likes   Reactions: lorenz0
Charles Link said:
Very good. :) Let ## T ## be positive: ## T=ks-I_o s''/r^2 ## and ## m_p g \sin{\alpha}-T=m_p s'' ##. I agree with your first expression, but I think the signs are incorrect on the second.
Thanks. So, ##\begin{cases}(T-ks)r=I_0 (-\alpha)=-I_0\frac{a}{r}\\ m_p g\sin(\alpha)-T=m_p a\end{cases}\Rightarrow a=\frac{m_p}{m_p-\frac{I_0}{r^2}}g\sin(\alpha)-\frac{k}{m_p-\frac{I_0}{r^2}}s\Rightarrow \omega=\sqrt{\frac{k}{m_p-\frac{I_0}{r^2}}}\Rightarrow T=\frac{2\pi}{\omega}=\frac{2\pi}{\sqrt{\frac{k}{m_p-\frac{I_0}{r^2}}}}##: is this correct?
 
Last edited:
Try your algebra again: I get a plus sign on the ## I_o/r^2 ##.
 
Charles Link said:
Try your algebra again: I get a plus sign on the ## I_o/r^2 ##.
I had forgotten the ##-## sign on ##\alpha## in the first equation. With that, ##a=\frac{m_p}{m_p-\frac{I_0}{r^2}}g\sin(\alpha)-\frac{k}{m_p-\frac{I_0}{r^2}}s##
 
My mistake=I believe the first expression should read ## T=ks+I_o s''/r^2 ##. Then it should get the correct sign on ## I_o ##. Edit: Let me double-check that...
 
  • Like
Likes   Reactions: lorenz0
Yes, that is the problem. I think this error resulted because the tension ## T ## in the very right segment of the rope between the pulley and the mass is peculiar in that it pulls the mass ## m_p ## to the left, but it will pull the pulley to the right.

The tension ## T ## is not a vector. From ## T ## the force vector is determined, and it points in different directions for the two items. It points towards the rope in each case.
 
  • Like
Likes   Reactions: lorenz0
  • #10
and be sure and see the last couple of sentences I added to the previous post.
 
  • Like
Likes   Reactions: lorenz0
  • #11
To get the first expression with the correct signs, it helps to look at just the pulley and consider the rope(s) anchored to it with one rope pulling to the left with force ## ks ## and the other pulling to the right with tension ## T ##. We then get ## I_o s''/r^2=T-ks ##, which agrees with post 8.
 

Similar threads

Replies
7
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
5K
Replies
24
Views
4K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 18 ·
Replies
18
Views
6K
Replies
1
Views
1K
  • · Replies 44 ·
2
Replies
44
Views
6K