A Independence of generalized coordinates and generalized velocities

AI Thread Summary
The discussion centers on understanding the independence of generalized coordinates and velocities within the framework of Lagrangian mechanics. It emphasizes that the Lagrangian's functional form is analyzed to derive the Euler Lagrange equations, where coordinates and their time derivatives are treated as independent variables. The example provided illustrates a simple Lagrangian, showing how to express it mathematically with independent variables. The conversation also touches on the challenge of accessing previous posts for further clarification. Overall, the independence of these variables is crucial for studying the dynamics in phase space diagrams.
VVS2000
Messages
150
Reaction score
17
TL;DR Summary
I was studying the derivation of the lagrangian formalism from Goldstein's textbook for mechanics and at one point they made a claim that generalized co-ordinates and velocities are independent and the derivative of one with respect to the other is zero.
How can I make sense of this and further how to think of this in the context of phase space diagrams?
 
Physics news on Phys.org
This question has been asked a number of times. Lagrangian mechanics analyses the functional form of the Lagrangian in order to derive the Euler Lagrange equations. At which point the coordinates and derivatives revert to their usual role, with one the time derivative of the other.

If you search my recent posts for the text in italics you should find a more complete answer.
 
PeroK said:
This question has been asked a number of times. Lagrangian mechanics analyses the functional form of the Lagrangian in order to derive the Euler Lagrange equations. At which point the coordinates and derivatives revert to their usual role, with one the time derivative of the other.

If you search my recent posts for the text in italics you should find a more complete answer.
Well you're apparently a P-F galaxy so can you provide the link to your post regarding this topic?
 
VVS2000 said:
Well you're apparently a P-F galaxy so can you provide the link to your post regarding this topic?
I've never found a way to do it from my phone.
 
PeroK said:
I've never found a way to do it from my phone.
Ok, if not too much trouble, can you explain how they're independent here itself?
 
VVS2000 said:
Ok, if not too much trouble, can you explain how they're independent here itself?
You treat them as independent variables and study the functional form of the Lagrangian. In the simplest case you have$$L(x,\dot x) = \frac 1 2 m\dot x^2 - V(x)$$Effectively what you do is say, okay, let's study a function of the form$$L(X,Y) = \frac 1 2 mY^2 - V(X)$$That's perfectly legitimate mathematically.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top