I Index Gymnastics: Tensor Product of 4-Vectors & Tensors

  • I
  • Thread starter Thread starter Milsomonk
  • Start date Start date
  • Tags Tags
    Index
Milsomonk
Messages
100
Reaction score
17
TL;DR Summary
Basic Index gymnastics
Hi all, I'm pretty rusty on my index gymnastics, I'm wondering if someone can explain to me the correct way to take the tensor product of a general 4-vector ## g^{\mu} ## and a tensor ## P^{/mu\ /nu} ## in Minkowski space. The part that is troubling me is the fact that both have a ## \mu ## as a contravariant index. Many thanks in advance for your help.
 
Physics news on Phys.org
The tensor product would be a rank 3 tensor ##g^\sigma P^{\mu\nu}##. The names of the indices does not have any intrinsic meaning. If you want the tensor product, you simply should not call indices in the different tensors the same.
 
  • Like
Likes Milsomonk and vanhees71
As Orodruin says, the product of a vector and a rank two tensor is a rank three tensor, ##T^{\mu\nu\sigma}=g^\mu P^{\nu\sigma}##.

If you are expecting a single index in the output, you need to contract the vector with the tensor. First you need to lower an index, either the one on your vector or the one on the tensor you want to contract over, using the metric ##\eta_{\mu\nu}##. Then you can sum over the indices you intend to contract. So ##g_\mu=\eta_{\mu\nu}g^\nu##, then your final result (assuming you want to contract with the first index on ##P##) is ##v^\nu=g_\mu P^{\mu\nu}##.

Note that the metric in flat spacetime is denoted ##\eta_{\mu\nu}## by convention, but in curved spacetime ##g_{\mu\nu}## is usually used. You can't confuse the rank two metric tensor with a vector, but nonetheless ##g## is probably a bad choice of symbol.
 
Last edited:
  • Like
Likes Orodruin, Milsomonk and cianfa72
Thanks for your replies! I am just trying to follow the working in an old thesis. I am expecting a single index result in the form of a force so I think their use of the term tensor product was in fact a little misleading.
Thanks again, this has been very helpful!
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Back
Top