I Index Gymnastics: Tensor Product of 4-Vectors & Tensors

  • I
  • Thread starter Thread starter Milsomonk
  • Start date Start date
  • Tags Tags
    Index
Milsomonk
Messages
100
Reaction score
17
TL;DR Summary
Basic Index gymnastics
Hi all, I'm pretty rusty on my index gymnastics, I'm wondering if someone can explain to me the correct way to take the tensor product of a general 4-vector ## g^{\mu} ## and a tensor ## P^{/mu\ /nu} ## in Minkowski space. The part that is troubling me is the fact that both have a ## \mu ## as a contravariant index. Many thanks in advance for your help.
 
Physics news on Phys.org
The tensor product would be a rank 3 tensor ##g^\sigma P^{\mu\nu}##. The names of the indices does not have any intrinsic meaning. If you want the tensor product, you simply should not call indices in the different tensors the same.
 
  • Like
Likes Milsomonk and vanhees71
As Orodruin says, the product of a vector and a rank two tensor is a rank three tensor, ##T^{\mu\nu\sigma}=g^\mu P^{\nu\sigma}##.

If you are expecting a single index in the output, you need to contract the vector with the tensor. First you need to lower an index, either the one on your vector or the one on the tensor you want to contract over, using the metric ##\eta_{\mu\nu}##. Then you can sum over the indices you intend to contract. So ##g_\mu=\eta_{\mu\nu}g^\nu##, then your final result (assuming you want to contract with the first index on ##P##) is ##v^\nu=g_\mu P^{\mu\nu}##.

Note that the metric in flat spacetime is denoted ##\eta_{\mu\nu}## by convention, but in curved spacetime ##g_{\mu\nu}## is usually used. You can't confuse the rank two metric tensor with a vector, but nonetheless ##g## is probably a bad choice of symbol.
 
Last edited:
  • Like
Likes Orodruin, Milsomonk and cianfa72
Thanks for your replies! I am just trying to follow the working in an old thesis. I am expecting a single index result in the form of a force so I think their use of the term tensor product was in fact a little misleading.
Thanks again, this has been very helpful!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top