If we were to check the countability of the cartesian product between two countable sets, A = {a1, a2, a3, ...} and P = {p1, p2, p3, ...}, the resultant set should be countable: If were to consider
{(a1,p1), (a1,p2), (a1,p3), ...} = M1
{(a2,p1), (a2,p2), (a2,p3), ...} = M2
{(a3,p1), (a3,p2), (a3,p3), ...} = M3
... ... ... ... ... ... ... ... ... ... ... ... ...
Taking the union of all the Mi's results in taking the union of a countable number of countable sets, and so the cartesian product A x P is countable. From this reasoning, we could say that for N = set of natural numbers, Nn for some finite n is countable:
Ni x N = Ni+1
N1 x N = N2 ---> since N is countable, so is N2
N2 x N = N3 ---> since N2 is countable, so is N3, and so forth.
However, if we were to continue this for Nn as n→∞ (an infinite dimensional space), the countability is arguable (I initially thought that it would be countable by inductive reasoning):
Consider the set of real numbers [0,1). This set has power c of the real numbers. We can write each number as some decimal expansion 0.a1a2a3...
We can map these numbers into the infinite dimensional case of Nn by making the correspondence 0.a1a2a3... → (a1,a2,a3,...). [0,1) would then be mapped to a proper subset of Nn (since each decimal place is bounded between 0 and 9, and forms ending in 99999... converge to some other form). Therefore Nn can not be countable for the infinite dimensional case.
I had thought that induction implied that you could apply the condition on Si onto limSi as i → ∞, so I am unsure of whether there is a flaw in this proof somewhere.